学科分类
/ 25
500 个结果
  • 简介:摘要在人工智能领域内,人工神经网络是一种运算模型,由大量的节点之间相互联接构成,目的是模拟人类的神经系统,目前已经广泛地应用在智能分析、回归、拟合等多个技术领域。本文从人工神经网络的概念讲起,介绍了有关人工神经网络的相关知识,分析了BP、RBF、SOM、DNN等不同人工神经网络的工作原理,介绍了各类神经网络在部分领域的应用,最后对人工神经网络的应用做出了展望。

  • 标签: 人工神经网络 非线性 股市预测 图像识别
  • 简介:

  • 标签:
  • 简介:目的利用BP神经网络的理论和算法,对COPD患者的历史数据进行分析,构建出COPD再入院患者的风险评估模型,通过对COPD再入院患者各相关因素的敏感度分析和疾病风险评估及分析,为BP神经网络建模在临床诊疗中的应用提供一定的参考,并为医疗资源的合理配置提供较为有效的解决方案。方法编写结构化查询语句,从HIS数据库抽取相关数据,导入Clementine11.1中,利用BP神经网络算法进行建模,预测结果用SPSS22.0进行模型的建模效果评估以及模型建模效果的假设检验。结果经过优化后的BP神经网络的拟合度为71.743%,预测准确度93.55%。在所有相关影响因素中,入院次数和入院状态对COPD患者的再入院风险度影响最大。在预测效果上,BP神经网络要优于传统的多元统计分析方法。

  • 标签: 再入院率 BP神经网络 多元线性回归 影响因素
  • 简介:随着医学和电子信息技术的迅速发展,人工神经网络(ANN)越来越多地被应用在重症监护室(ICU)中。ANN可以把大量的临床资料转化为信息,辅助医护人员进行诊断和治疗。在ICU中,ANN的作用有很多,主要是用来进行结果预测。应用ANN对于合理利用我国有限的医疗卫生资源以及改善患者预后具有重要的意义。

  • 标签: 监护室 人工神经网络 结果预测
  • 简介:摘要目的提升心电图心律失常分类算法的性能,为临床心电诊断提供辅助依据。方法将一维心电图数据按照R点进行切分,将切分后的数据生成2D图像。利用数据增强技术将样本进行扩增,再利用二维卷积神经网络(2D-CNN)中的2D卷积层、2D最大池化层、Flatten层和全连接层,对图像特征进行提取,并通过Softmax分类器进行分类。利用带有权重系数的损失函数来增强模型对于S类和V类的学习。采用MIT-BIH数据集进行模型训练并评估算法性能。结果样本扩增和使用带有权重系数的损失函数能够提升模型的召回率和特异性指标,同时保持模型对室性异位搏动(VEB)和室上性异位搏动(SVEB)分类的精确率的指标。结论所提出模型的准确率为99.02%,SVEB的召回率为96.4%,表明该分类方法可以辅助医护人员诊断心脏疾病。

  • 标签: 心律失常 数据增强 卷积神经网络 分类性能
  • 简介:摘要在双燃料发动机调速控制系统应用中,工况复杂多变,常常会出现非线性的、时变的和常用系统无法有效控制的情况,如何实现控制发动机的供油(气)量的比例来实现发动机的调速控制和功率控制是有一定难度的。本文引入一种人工神经网络分析方法,对有效实时控制发动机转速是很必要的。

  • 标签: 双燃料发动机 调速系统 人工神经网
  • 简介:本文对皮肤肿瘤目标识别技术进行研究。首先利用阈值分割方法对皮损区域进行分割;然后,依据皮肤肿瘤早期诊断ABCD准则,对皮损区域提取了颜色、纹理和形状等特征,并基于相关性分析对所提取的特征进行优选;最后采用组合BP神经网络模型实现了皮肤肿瘤目标的分类识别。本文方法在黄色人种皮肤镜图像上进行实验,结果表明,该方法具有更高的分类精度,敏感度和特异度分别达到了93.3%和96.7%,识别结果令人满意。

  • 标签: 皮肤镜图像 BP神经网络 皮肤肿瘤 识别分类
  • 简介:摘要近年来卷积神经网络(convolutional neural network ,CNN)在辅助分析肺癌方面表现出良好的应用前景和研究价值。CNN可以从图像数据中自主学习以提取特定的与临床相关的特征。本文对构建CNN通过输入CT图像进行端到端分析,从而在术前预测肺癌风险和临床治疗效果;以及通过输入肺结节组织切片图像进行术后病理学分析作一综述。

  • 标签:
  • 简介:摘要目的基于深度卷积神经网络(DCNN)方法自动测量彩色眼底像上全局和局部豹纹分布密度。方法应用研究。将2021年5~ 7月于山东第一医科大学附属青岛眼科医院北部院区行近视手术的患者514例1 028只眼的1 005张彩色眼底像建立人工智能(AI)数据库。采用RGB颜色通道重标定方法(CCR算法)、基于Lab颜色空间的CLAHE算法、多重迭代照度估计的Retinex算法、具有色彩保护的多尺度Retinex算法对图像进行预处理。对比观察上述4种图像增强方法以及使用Dice损失、边缘重叠率损失和中心线损失对豹纹分割模型效果的影响。建立眼底豹纹分割模型识别全图范围内豹纹结构区域;构建眼底组织结构检测模型用于视盘及黄斑中心凹定位。计算视野范围内后极部豹纹密度(FTD )、黄斑区豹纹密度(MTD)、视盘区豹纹密度(PTD )。结果应用CCR算法图像预处理和训练损失组合后,豹纹分割模型的Dice系数、准确率、灵敏度、特异性、约登指数分别达到0.723 4、94.25%、74.03%、96.00%和70.03%。模型自动测量的FTD、MTD、PTD值与人工标注测量值平均绝对误差分别为0.014 3、0.020 7、0.026 7,均方根误差则分别为0.017 8、0.032 3、0.036 5。结论基于DCNN分割和检测方法能自动测量近视患者眼底全局和局部区域的豹纹分布密度,可以更准确地辅助临床监测和评估眼底豹纹改变对近视发展的影响。

  • 标签: 近视 神经网络(计算机) 彩色眼底像 豹纹分布密度
  • 简介:摘要为了提高卫勤模拟训练的效果,基于战伤严重度评分并综合运用深度神经网络(DNN)建模技术,建立一种新的战伤数据增强模型(WTSS-DNN),用于准确统计卫勤模拟训练系统中的伤员数据,并构建满足卫勤组织指挥要求、符合战时伤员救治特征的战场模拟伤员。WTSS-DNN相较于传统的人工数据生成方法,在保持后果预测准确性和伤情合理性的前提下,可以自动化、大规模地生成战伤伤员数据,对战伤数据分析研究、战时伤员伤情快速评估及分级后送具有重要意义。

  • 标签: 深度神经网络 战场虚拟伤员 数据增强 模拟训练
  • 简介:摘要人工神经网络(ANN)是一种驱动人工智能(AI)的网络框架,其中采用经典卷积神经网络(CNN)进行胚胎质量评估可进行固定时间节点胚胎细胞计数和图像识别;采用全连接的深度神经网络(DNN),胚胎图像识别准确度提升,适用于较高硬件配置以及需要整合临床信息进行综合预测;残差网络通过增加层数提高准确度并通过跳跃连接解决梯度消失问题,实现动态胚胎评估。贝叶斯网络(BN)机器学习擅长推理,在条件缺失情况下可通过推理弥补数据不足,可结合临床复杂信息进行综合预测评估;支持向量机(MLP)机器学习存在梯度消失与爆炸,容易丢失图像部分空间特征,适用于小样本评估。ANN在预测胚胎植入率、胚胎非整倍体方面具有一定优势,开发新的胚胎质量评估方法减少侵入性检测是人类辅助生殖技术(ART)重要研究方向。

  • 标签: 人类辅助生殖技术 人工智能 深度学习 人工神经网络
  • 简介:目的建立口岸鼠密度变化的动态模拟径向基函数神经网络模型,分析预测效果。方法监测鼠密度,分析鼠密度与气象因子相关性,运用多元回归方程分析气象因子对鼠密度的影响,建立鼠密度变化的动态模拟径向基函数神经网络模型,分析模型的准确性。结果建立的模型的训练准确率为91.34%,检验准确率为91.17%,测试准确率为89.03%,平均准确率为90.51%。模型认为自变量的重要性排序依次为月均最低气温、月均相对湿度、日照、降水量。结论径向基函数神经网络技术能够较好地应用到鼠密度动态预测工作中,为口岸鼠类防控提供了科学依据。

  • 标签: 鼠密度 气象因素 径向基函数神经网络 预测
  • 简介:摘要本文通过研究人工神经网络算法的理论,结合药品安全指数的实际情况提出了药品安全指数权值的调整策略和药品安全指数权值的确定方法,根据这种方法确定了一级指标与二级指标指数级,并对一级指标中的药品机构检验合格率进行了细致的划分与分析。最后说明了这种权值策略提供的药品安全指数能科学、实时、动态地处理各种指标与相应的权值。

  • 标签: 药品安全指数 神经网络算法 指标权值
  • 简介:摘要在医疗卫生领域,人工智能具有广阔的应用前景和较高的实用价值。介绍了人工智能在神经网络中的应用,及应用前景。

  • 标签: 人工智能 神经网络 前景
  • 作者: 凌人男 杨若峰 易芹芹 饶梓彬 杨熠 金洪涛 程立新
  • 学科: 医药卫生 >
  • 创建时间:2021-10-24
  • 出处:《磁共振成像》 2021年第10期
  • 机构:深圳市人民医院(暨南大学第二临床医学院,南方科技大学第一附属医院)放射科,深圳 518020,上海交通大学约翰·霍普克罗夫特计算机科学中心,上海 200240,深圳市人民医院(暨南大学第二临床医学院,南方科技大学第一附属医院)妇产科,深圳 518020,深圳市人民医院(暨南大学第二临床医学院,南方科技大学第一附属医院)病理科,深圳 518020,深圳市人民医院(暨南大学第二临床医学院,南方科技大学第一附属医院)ICU,深圳 518020
  • 简介:摘要目的探索基于多参数MRI的放射组学特征和神经网络模型在区分宫颈癌淋巴结转移的效能。材料与方法回顾性分析178例宫颈癌并提取9个临床及病理特征,经过方差分析进而提取3个特征进入模型。两位观察者分别用软件勾勒得到感兴趣容积,提取到428个放射组学特征。放射组学特征结合临床及病理特征建模:分别组成428维、437维、431维模型。通过Python库的torch和sklearn构建并评价神经网络模型和支持向量机模型。组内相关系数(intraclass correlation coefficient,ICC)来评估观察者之间的信度,使用分类准确率、敏感度、特异度和受试者特征曲线下面积(area under the receiver operating characteristics curve,AUC)用来衡量检测模型性能。使用sklearn中的metrics.roc_curve函数绘制ROC曲线,通过最大约登指数(Youden index)确定最佳界值,并进行诊断效能评估。结果两位观察者ICC为0.819、观察者内ICC为0.796。431维神经网络模型AUC为0.882,在测试集中该模型的分类准确率、敏感度和特异度分别为0.810、0.840和0.741,优于其他模型。结论基于多参数MRI的神经网络模型可有效地预测宫颈癌淋巴结转移。

  • 标签: 宫颈癌 淋巴结 转移 影像组学 机器学习
  • 简介:摘要目的探讨卷积神经网络(CNN)在胸部CT肋骨骨折诊断中应用的准确性和可行性。方法收集2017年5月至2019年5月于山西白求恩医院行胸部CT检查的305例肋骨骨折患者的影像资料,经过图像裁剪构建包含5类胸部CT肋骨骨折图像数据集,共7433张图像,作为训练组数据,在深度学习caffe框架下采用Faster R-CNN和Yolov3模型对数据集进行训练和测试。另选取同期肋骨骨折患者20例,裁剪后144幅包含肋骨骨折的CT图像作为验证组,由两位高年资主任医师阅片并确定肋骨骨折类型及部位等作为诊断标准,分别使用Faster R-CNN、Yolov3模型进行验证,同时两位CT医师对验证组图像进行判读。比较3种方法的诊断准确率、诊断一致性及阅片时间。结果验证组144幅CT图像共包含162处骨折,骨折类型包括双侧骨皮质断裂71处、外侧骨皮质断裂38处、内侧骨皮质断裂21处、骨皮质屈曲骨折12处、其他类型骨折20处。Faster R-CNN模型、Yolov3模型、CT医师诊断肋骨骨折的总准确率分别为95.68%(155/162)、83.33%(135/162)、96.30%(156/162),组间比较差异有统计学意义(P<0.001)。Kappa一致性检验显示,Faster R-CNN模型及CT医师的诊断一致性较好(Kappa=0.851,P=0.012)。CT医师、Faster R-CNN模型、Yolov3模型平均每幅图阅片时间分别为(11.57±5.80)s、(0.52±0.15)s、(0.054±0.003)s,组间比较差异有统计学意义(P<0.01)。结论利用深度卷积神经网络识别胸部CT肋骨骨折具有可行性,诊断总准确率与有经验的CT医师相当,而阅片速度更优。

  • 标签: 体层摄影术,X线计算机 卷积神经网络 肋骨骨折 分类识别
  • 简介:摘要目的优选活血散瘀泡腾片的提取工艺。方法以芍药苷与羟基红花黄色素A含量、干膏收率为评价指标,采用层次分析法、多指标综合评分法结合正交试验、Back Propagation(BP)人工神经网络优选加水量、提取时间、提取次数等工艺参数。结果芍药苷和羟基红花黄色素A分别在0.079 5~1.590 4 μg、0.038 5~1.539 2 μg范围内线性关系良好,平均回收率分别为98.18%、96.22%,RSD分别为0.77%、1.31%。确定活血散瘀泡腾片最佳提取工艺为9倍量水,加热回流提取3次,每次1 h。结论正交试验联合BP人工神经网络优化方法实用高效,优选的提取工艺科学合理,稳定可行。

  • 标签: 芍药苷 羟基红花黄色素A 正交试验 人工神经网络 活血散瘀泡腾片
  • 简介:摘要由于烘丝生产前操作工需要根据生产经验预测入口含水率,然而车间内环境温湿度、烘丝前工序设备状态等条件的变化,导致烘前含水率变化较大,仅靠经验预测烘前含水率,预测结果误差较大,导致操作工设置参数不合理,出口含水率波动较大,影响产品的感观质量。因此,本文通过对历史数据进行分析处理后,采用RBF神经网络,建立烘前含水率预测模型,并在烘丝工序操作终端增加人机交互界面,操作工选择工单信息、输入相应的参数即可完成烘丝入口含水率的预测,预测结果误差为,可以满足生产要求。

  • 标签: RBF神经网络 烘前水分 数据处理
  • 简介:为早期诊断川崎痛,应用BP神经网络原理建立川崎病的诊断模型.以156例川崎病与非川崎病患者的体温、皮疹、口腔黏膜改变、实验室检查结果等9项指标等作为BP神经网络的输入参数,在MATLAB7程序中对其中随机抽取的90例学习样本进行训练并建模.以剩余的66例作为测试样本进行预测,结果表明该模型对川崎病和非川崎病的预测准确率分别为97.4%、92.9%,提示此模型可有效地判别出川崎病与非川崎病,可用于川崎病的早期辅助诊断.

  • 标签: BP神经网络 川崎病 诊断