学科分类
/ 1
14 个结果
  • 简介:摘要 : 叶片湿润时间( LWD)是植物病害模型重要输入变量之一,它与许多叶部病原菌侵染有关,影响病原侵染和发育速率。为了准确地预测日光温室黄瓜病害发生时间和方位,本研究于 2019年 3月和 9月在北京两个不同类型日光温室内按照棋盘格法设置了 9个采样点部署温湿光传感器和目测叶片湿润时间,每隔 1 h采集一次温度、湿度、辐射和叶片湿润数据进行定量估算分析。分析结果表明: BP神经网络模型在两个温室试验条件下获得了相似的准确度( ACC为 0.90和 0.92),比相对湿度经验模型估算叶片湿润时间准确度( ACC为 0.82和 0.84)更高,平均绝对误差 MAE分别为 1.81和 1.61 h,均方根误差 RSME分别为 2.10和 1.87,决定系数 R2分别为 0.87和 0.85;在晴天和多云天气条件下,叶片湿润时间空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间( 12.17 h/d)最长区域;由东向西方向上,叶片湿润时间空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间( 4.83 h/d)最短区域;雨天叶片湿润平均时间比晴天和多云长,春季和秋季分别为 17.15和 17.41 h/d。这些变化和差异对温室黄瓜种群水平方向叶片湿润时间分布具有重要影响,与大多数高湿性黄瓜病害发生规律密切相关。本研究为预测温室黄瓜病害分布提供了有价值参考,对控制病害流行和减少农药使用具有重要意义,提出区域化分析温室内叶片湿润时间方法,可以为模拟日光温室叶片湿润时间空间分布提供参考。

  • 标签: 日光温室 估算模型 区域化 叶片湿润时间 BP神经网络 传感器
  • 简介:摘要 : 受经济和气候驱动,长江经济带水田空间格局发生了显著变化,影响区域粮食安全与生态安全。本研究基于 1990-2015年土地利用遥感监测数据,利用 GIS空间分析功能,探究长江经济带水田空间格局动态变化特征,采用当量因子法计算生态系统服务价值( ESV),分析了水田变化综合影响。结果表明: 1) 1990-2015年长江经济带水田规模持续缩减,共减少了 17390km2,减幅呈增长态势具有显著地域差异,长江中上游与下游水田减幅相差约为 9.56%。其中下游减幅较大,水田占区域比例随之降低,中上游恰好相反。 2)由于经济建设及水产养殖发展,水田主要转化为建设用地和水系,水田主要由水系、旱地和湿地等转化而来。长江三角洲城市群、长江中游及成渝城市群水田变化最为剧烈,建设用地侵占水田扩张现象分布广泛,水田转为水系主要在两湖平原局部地区。 3)水田与其他生态系统转化对 ESV是正影响,水田转为水系对此贡献最大,其转化规模决定了不同时期 ESV净增量大小,水系转化为水田损失价值最多,建设用地侵占水田次之。不同市域水田变化情况不一致,因此 ESV增减情况具有明显差异。 4)生态系统服务中水文调节、水资源供给增强同时,食物生产、气体调节受到严重损害,与水资源规模扩大和水田资源大量流失有直接关系。研究结果有助于揭示长江流域水田时空变化过程及其对各项生态系统服务影响,可为区域土地利用规划、农业政策与生态可持续发展提供理论支持。

  • 标签: 水田 生态系统服务价值 长江经济带 权衡协同 时空变化 遥感数据
  • 简介:摘要 : 数十年来,遥感技术一直被用作精准农业重要数据采集工具。根据距离地面的高度,遥感平台主要包括卫星、有人驾驶飞机、无人驾驶飞机系统和地面车辆。这些遥感平台上搭载绝大多数传感器是成像传感器,也可以安装激光雷达等其他传感器。近年来,卫星成像传感器发展极大地缩小了基于飞机成像传感器在空间、光谱和时间分辨率方面的差距。最近几年,作为低成本遥感平台无人机系统出现极大地填补了有人驾驶飞机与地面平台之间间距。有人飞机具有飞行高度灵活、飞行速度快、载荷量大、飞行时间长、飞行限制少以及耐候性强等优势,因此在未来仍将是主要精准农业遥感平台。本文第 1部分概述了遥感传感器类型和三个主要遥感平台(即卫星、有人驾驶飞机和无人驾驶飞机系统)。接下来两个部分重点介绍用于精准农业有人机载成像系统,包括由安装在农用飞机上消费级相机组成系统,并详细描述了部分定制和商用机载成像系统,包括多光谱相机、高光谱相机和热成像相机。第 4部分提供了五个应用实例,说明如何将不同类型遥感图像用于精准农业应用中作物生长评估和作物病虫害管理。最后简要讨论了将不同遥感平台和成像系统用于精准农业上一些挑战和未来努力方向。

  • 标签: 机载成像系统 载人飞机 多光谱图像 高光谱图像 远红外图像 精准农业
  • 简介:摘要 : 溶解氧含量测量对水产养殖具有极其重要意义,但目前中国市面上溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差关系进行低成本、易维护溶解氧传感器研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以 STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换( FFT)计算激发光与参照光相位差,进而转化为溶解氧浓度,实现溶解氧测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器测量范围是 0~20 mg/L,响应延迟小于 2 s,溶氧敏感膜使用寿命约 1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器研发与市场化奠定了良好基础。

  • 标签: 溶解氧传感器 荧光淬灭 水产养殖 STM32微处理器 溶氧敏感膜
  • 简介:摘要 : 准确获取西兰花花球面积和新鲜度是确定其长势关键步骤,本研究通过对深度残差网络 ResNet进行改进得到一种新型西兰花花球分割模型,并通过花球部位黄绿颜色占比判断其新鲜度,实现低成本高效准确地西兰花表型信息提取。主要技术流程包括:( 1)基于地面自动影像获取平台拍摄西兰花花球正射影像并建立原始数据集;( 2)对训练图像进行预处理并输入模型进行分割;( 3)基于颜色信息用粒子群结构 PSO和大津法 Otsu对分割结果进一步进行阈值分割,获取其新鲜度指标。试验结果表明:本研究建立分割模型精度优于传统深度学习模型和基于颜色空间变换和阈值分割模型, 4个评价指标结构相似性指数 (SSIM)、平均精度 (Precision)、平均召回率 (Recall)、 F-度量 (F-measure)结果分别为 0.911、 0.897、 0.908和 0.907,相比于传统方法提升了 10%-15%,且对土壤反射率波动、冠层阴影、辐射强度变化等干扰具有一定鲁棒性。同时,在分割结果基础上采用 PSO-Otsu法可以实现花球新鲜度快速分析,其精度超过了 0.8。本研究结果实现了西兰花田间多表型参数高通量获取,可以为作物田间长势监测研究提供重要参考。

  • 标签: 深度学习 西兰花表型 机器视觉 自动分级 田间平台
  • 简介:摘要 : 土壤养分作为农业生产重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析传统方法能够全面准确地检测土壤养分,但检测过程中土壤取样及预处理过程繁琐、操作复杂、费时费力,不能实现土壤养分原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光干扰。该方法使用波长范围 1260~1610 nm 8通道窄带激光二极管作为近红外光源,通过测量 8通道激光光束土壤反射率,建立土壤养分中氮( N)关于土壤反射率计量模型,实现了 N快速检测。在 74组已知 N含量土壤样品中,选取 54组作为训练集, 20组作为预测集。基于一般线性模型,对训练集中土壤 N含量与土壤反射率定量化参数进行训练,筛选显著波段后计量模型 R2达到 0.97。基于建立计量模型,预测集中土壤 N含量预测值与参考值决定系数 R2达到 0.9,结果表明该方法具有土壤养分现场快速检测能力。

  • 标签: 土壤氮素 近红外光谱 近场遥测 锁相放大 光电探测
  • 简介:摘要 : 光是植物进行光合作用主要能量来源,光照好坏直接影响作物产量和品质。本研究针对现有植物补光系统多以功能叶光合能力为基准进行冠层补光,导致冠层新生叶光抑制、株间功能叶位补光不足以及补光位置不能适应作物生长进行动态调整问题,以黄瓜为研究对象,设计了一种基于植株需光差异特性设施黄瓜立体光环境智能调控系统。该系统由智能控制子系统、冠层 -株间 LED补光子系统、冠层 -株间环境监测子系统和补光灯升降子系统组成,通过 ZigBee技术实现各子系统间无线通信。其中冠层 -株间环境监测子系统分别获取冠层和株间环境信息并发送至智能控制子系统,智能控制子系统根据环境实时信息调用冠层调控模型和株间适宜叶位调控模型获得相应调控目标值,并将其下发至冠层 -株间补光灯,实现冠层与株间补光灯动态实时调控。在陕西省泾阳县蔬菜产业综合服务区蔬菜基地分别部署立体补光设备和传统冠层补光设备,并进行系统调控效果验证试验。结果表明,立体补光区黄瓜植株株高和茎粗显著增长,其中相比传统冠层补光区平均株高、茎粗分别增长了 8.03%和 7.24%,相比自然处理区平均株高、茎粗分别增长了 26.51%和 36.03%;在一个月采摘期内,立体补光区相比传统冠层补光区和自然处理区产量分别提升了 0.28和 1.39 kg/m2,经济效益分别增加了 2.82和 4.88 CNY/m2,说明立体光环境调控系统能够提高经济效益,具有应用推广价值。

  • 标签: 设施光环境 ZigBee 黄瓜叶位 立体补光 智能调控 PWM
  • 简介:摘要 : 植被分类是高光谱影像分类中特定应用问题,光谱特征和空间特征是植被分类中常用两类特征,比较这两类特征性能,对实际植被分类应用中选择合适特征类型或两者有效结合具有指导意义。用主成分分析( PCA)提取光谱特征时,常选择前几个主成分( PCs)作为光谱特征,虽然它们包含较大信息量但并不能保证较高类别可分性和分类正确率,针对这一问题本研究提出了一种混合特征提取方法,对高光谱影像在 PCA基础上用改进基于分散矩阵特征选择方法选出具有较高类别可分性 PCs用于后续分类。利用一景 AVIRIS高光谱植被影像,从分类精度角度,首先比较了所提出混合特征提取方法和原始 PCA、独立主成分分析( ICA)及线性判别分析( LDA) 3种常用子空间特征提取方法在高光谱影像植被分类中性能。试验结果表明所提出混合特征提取方法在研究中数据集 1和 2上均获得了最高总体分类正确率,分别为 82.7%和 86.5%。与原始 PCA相比,本研究提出混合特征提取方法总体分类正确率,在数据集 1和 2上分别提高了 1.5%和 2.5%。由此阐明了所提出混合特征提取方法在高光谱植被分类中有效性。对光谱特征和空间特征在高光谱影像植被分类性能比较中,总体上空间特征获得分类正确率比光谱特征高,特别是 Gabor特征,在两个数据集上均获得了最高总体分类正确率分别为 95.5%和 96.7%。由此表明空间特征较光谱特征在高光谱影像植被分类中更具优势。本研究结果为后续改进空 -谱特征方法及其两者有效结合,进一步提高植被分类正确率提供了参考。

  • 标签: 高光谱影像 植被分类 光谱特征 空间特征 混合特征提取方法 分散矩阵 主成分分析
  • 简介:摘要 : 为提高现有苹果目标检测模型在硬件资源受限制条件下性能和适应性,实现在保持较高检测精度同时,减轻模型计算量,降低检测耗时,减少模型计算和存储资源占用目的,本研究通过改进轻量级 MobileNetV3网络,结合关键点预测目标检测网络( CenterNet),构建了用于苹果检测轻量级无锚点深度学习网络模型( M-CenterNet),并通过与 CenterNet和单次多重检测器( Single Shot Multibox Detector, SSD)网络比较了模型检测精度、模型容量和运行速度等方面的综合性能。对模型测试结果表明,本研究模型平均精度、误检率和漏检率分别为 88.9%、 10.9%和 5.8%;模型体积和帧率分别为 14.2MB和 8.1fps;在不同光照方向、不同远近距离、不同受遮挡程度和不同果实数量等条件下有较好果实检测效果和适应能力。在检测精度相当情况下,所提网络模型体积仅为 CenterNet网络 1/4;相比于 SSD网络,所提网络模型 AP提升了 3.9%,模型体积降低了 84.3%;本网络模型在 CPU环境中运行速度比 CenterNet和 SSD网络提高了近 1倍。研究结果可为非结构环境下果园作业平台轻量化果实目标检测模型研究提供新思路。

  • 标签: 机器视觉 深度学习 轻量级网络 无锚点 苹果检测
  • 简介:摘要 : 水稻叶片叶绿素含量遥感诊断是实现水稻精准施肥核心要素。本研究通过分析寒地水稻关键生育期叶片高光谱反射率信息,同时结合 PROSPECT模型叶绿素含量吸收系数,参考借鉴现有高光谱植被指数构造方法和形式,利用相关性分析、连续投影法、遗传算法优化粗糙集属性简约法进行高光谱特征选择,提出了仅含有 695、 507和 465nm 3个高光谱特征波段红边优化指数( ORVI)。与 Index Data Base数据库中其他用于叶绿素含量反演植被指数,包括 ND528,587、 SR440,690、 CARI、 MCARI反演结果进行了对比分析,结果表明: IDB数据库中已有 4种植被指数叶绿素含量反演模型决定系数 R2分别为 0.672、 0.630、 0.595和 0.574; ORVI植被所建立叶绿素含量反演模型决定系数 R2为 0.726,均方根误差 RMSE为 2.68,精度高于其他植被指数,说明了 ORVI在实际应用中,能够作为快速反演水稻叶绿素含量高光谱植被指数。本研究能够为寒地水稻叶绿素含量高光谱遥感诊断及管理决策提供一定客观数据支撑和模型参考。

  • 标签: 植被指数 叶绿素反演 水稻叶片 高光谱遥感 红边优化指数 ORVI
  • 简介:摘要 : 含水量是表征水稻生理和健康状况关键参数,精确预测水稻含水量对于水稻育种和大田精准管理具有重要意义。目前,利用无人机搭载光谱图像传感器监测作物生长研究主要集中在利用植被指数评估作物在单一或者几个生育期生长参数,针对作物含水量监测研究非常有限。本研究主要利用多旋翼无人机低空遥感平台获取不同生育期水稻冠层 RGB图像和多光谱图像,通过提取植被指数和纹理特征,分析水稻动态生长变化,并构建了基于随机森林回归方法含水量预测模型。试验结果表明:( 1)从无人机图像提取植被指数、纹理特征以及地面测量含水量都能用于监测水稻生长,并且这些参数随水稻生长呈现出了相似的动态变化趋势;( 2)与 RGB图像相比,多光谱图像评估水稻含水量具有更高潜力,其中归一化光谱指数 NDSI771,611实现了更好预测精度( R2=0.68, RMSEP=0.039, rRMSE =5.24%);( 3)融合植被指数和纹理特征能够进一步改善含水量预测结果( R2=0.86, RMSEP=0.026, rRMSE=3.51%),预测误差 RMSEP分别减小了 16.13%和 18.75%。上述结果表明,基于无人机遥感技术监测水稻含水量是可行,可为农田精准灌溉和田间管理决策提供新思路。

  • 标签: 无人机低空遥感 水稻含水量 RGB图像 多光谱图像 植被指数 纹理特征 特征融合
  • 简介:摘要 : 随着无线终端数量快速增长和多媒体图像等高带宽传输业务需求增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵现象以及固定电池网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络( CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制动态频谱和能耗均衡( DSEB)事件驱动分簇路由算法。算法包括:( 1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取可用信道、节点间距离、剩余能量和邻居节点度为相似度对被监控区域内节点进行聚类分簇并选取簇头,构建分簇拓扑过程对各分簇大小均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;( 2)融入边缘计算事件触发数据路由,根据构建分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点 -主网关节点两种情况;( 3)基于频谱变化和通信服务质量( QoS)自适应重新分簇:基于主用户行为变化引起可用信道改变,或分簇效果不佳对通信服务质量产生干扰,触发 CRSN进行自适应重新分簇。此外,本研究还提出了一种新能耗均衡策略去能量消耗中心化(假设 sink为中心),即在网关或簇头节点选取计算式中引入与节点到 sink距离成正比权重系数。算法仿真结果表明,与采用 K-medoid分簇和能量感知事件驱动分簇 (ERP)路由方案相比,在 CRSN节点数为定值前提下,基于 DSEB分簇路由算法在网络生存期与能效等方面均具有一定改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

  • 标签: 认知无线传感器网络 (CRSN) 作物表型信息采集 能耗均衡 分簇路由
  • 简介:摘要 : 水肥一体化自动装备使用能够有效提高水肥资源利用率,但需要在作业前获知作物营养状况及水肥需求量,而通过人工手持测量仪器来获取这些信息,存在着时效性差和劳动强度大等缺点。针对以上问题,本研究以常见作物玉米为研究对象,使用大疆精灵Ⅲ无人机携带 RedEdge-M多光谱相机在田间上空采集玉米多光谱图像,同时使用 YLS-D系列植株营养测定仪测量玉米植株氮素和水分含量等营养信息,根据这些信息将采集图像分为 3个等级(每个等级共包含 530幅五通道图像,其中 480幅作为训练集, 50幅作为验证集),提出了一种基于卷积神经网络玉米作物营养状况识别方法。并基于 TensorFlow深度学习框架搭建了 ResNet18卷积神经网络模型,通过向模型输入彩色图像数据和五通道多光谱图像数据,分别训练出适合于彩色图像和多光谱图像玉米植株营养状况等级识别模型。试验结果表明:训练后模型能够识别玉米作物彩色图像和多光谱图像,能够输出玉米营养状况等级和 GPS 信息,识别彩色图像模型在验证集正确率为 84.7%,识别多光谱图像模型在验证集正确率为 90.5%,模型训练平均时间为 4.5h,五通道图像识别平均用时为 3.56s。该识别方法可快速无损地获取玉米作物营养状况,为有效提高水肥资源利用率提供了方法和依据。

  • 标签: 智慧农业 卷积神经网络 多光谱图像 玉米作物 营养状况识别
  • 作者: 刘守阳 1 2 3* 金时超 5 6 郭庆华 5 6 朱艳 4 Fred Baret1 2 3*
  • 学科: 农业科学 > 农业基础科学
  • 创建时间:2020-06-02
  • 出处:《智慧农业(中英文)》 2020年第1期
  • 机构:1.南京农业大学作物表型组学交叉研究中心,江苏南京 210095; 2.法国农业和环境科学研究院 CAPTE实验室,阿维尼翁 210095,法国; 3.南京农业大学江苏省现代作物生产协同创新中心,江苏南京 210095; 4.南京农业大学国家信息农业工程技术中心 /教育部智慧农业工程研究中心,江苏南京 210095; 5.中国科学院植物研究所植被与环境变化国家重点实验室,北京 100093; 6.中国科学院大学,北京 100049
  • 简介:摘要 : 冠层光截获能力是反映作物品种间差异重要功能性状,高通量表型冠层光截获对提高作物改良效率具有重要意义。本研究以小麦为研究目标,利用数字化植物表型平台( D3P)模拟生成了 100种冠层结构不同小麦品种在 5个生育期三维冠层场景,记录了从原始冠层结构中提取绿色叶面积指数( GAI)、平均倾角( AIA)和散射光截获率( FIPARdif)信息作为真实值 ,进一步利用上述三维小麦场景开展了虚拟激光雷达( LiDAR)模拟实验,生成了对应三维点云数据。基于模拟点云数据提取了其高度分位数特征( H)和绿色分数特征( GF)。最后,利用人工神经网络( ANN)算法分别构建了从不同 LiDAR点云特征( H、 GF和 H+GF)输入到 FIPARdif、 GAI和 AIA反演模型。结果表明,对于 GAI、 AIA和 FIPARdif,预测精度从高到低对应点云特征输入为 GF+H > H > GF。由此可见, H特征对提高目标表型特性估算精度起到了重要作用。输入 GF + H特征,在中等测量噪音( 10%)情况下, FIPARdif和 GAI估算均获得了满意精度, R2分别为 0.95和 0.98,而 AIA估算精度( R2=0.20)还有待进一步提升。本研究基于 D3P模拟数据开展,算法实际表现还有待通过田间数据进一步验证。尽管如此,本研究验证了 D3P协助表型算法开发能力,展示了高通量 LiDAR数据在估算田间冠层光截获和冠层结构方面的较高潜力。

  • 标签: 冠层光截获 高通量表型 LiDAR 数字化植物表型平台( D3P) 小麦冠层