简介:本文主要研究三方面的内容,首先参照DirichletL函数的定义和Xk(n)【Dirichlet特征】的定义,引入了一个与DirichletL函数自守互补的林氏函数L(s,Yk)和Yk(n)【林氏特征】,研究了DirichletL函数与Riemann(函数的相互关系,其次研究了DirichletL函数非平凡零点及零点数目的计算公式,第三探讨了DirichletL函数非平凡零点的分布规律。主要结果是:DirichletL函数与Riemannζ函数两者关系式为:L(s,x,)=ζ(s)IIp[1-Y1(p)p^-τ],两者的零点重合;两者的非平凡零点及零点数目的计算公式为:ImInF(1/4+it/2)-t/2Inππ+π=(n+1/2)πr,其非平凡零点都位于复平面上Re(s)=1/2的直线上。
简介:摘要:在高中的数学学习中,零点占据重要的地位,对定义的学习与理解是高中学习的关键,根据笔者在学习中对零点的存在的经验,重点是把握定义与数形结合的能力,形成能够把根,交点等问题转化为零点问题解答。
简介:摘要:复合函数的研究对学生思维能力的培养起着至关重要的作用,如何开拓学生的思维领地,培养学生探究思维能力是复合函数教学过程中十分重要的研究课题,通过一道关于零点问题的复合函数的多种解法旨在拓展思路,渗透数学思想,提高思维能力。
简介:通过对复变函数论里的欧拉公式进行全新领悟,对数的内涵进行再认识,推导出一种新的计算Riemannζ函数非平凡零点和零点数目的公式;该计算公式为:[ImlnГ(1/4+it/2)-t/2lnπ+π]:(n+l/2)π,当n为整数时,这时的ρ=(1/2+it)即为在0〈Im(s)〈t的区间内Riemannζ函数非平凡零点,(n+1)即为在0〈Im(s)〈t的区间内Rdemannζ函数非平凡零点的准确数目。在推导这个公式的过程中,重点阐述了零点因子、壹点因子和零点因子函数、壹点因子函数、函数F(s)、函数L(s)、函数A(s)等概念和内涵,从而证明了Rde—mannζ函数所有的非平凡零点都位于复平面上Re(s)=1/2的直线上。
简介:摘要:我们当今的社会对于人们的要求已经不再是要让他们简单的掌握高水平的知识,而是更加注重要让人们在实践当中养成良好的各种能力,在这样的社会大条件之下,就需要教师在开展教学任务的时候改善以往的内容和方式,在教学过程中不断地培养学生的各方面技巧,表现在数学学科当中,教师就需要在进行专业知识讲解的同时促使学生的思维能力与逻辑推理进行不断的养成,本文主要就高中数学中的一个重要的函数问题为例提出一些具体的改善措施。
简介:摘要函数与方程的理论是高中新课标中新增的知识点,高中阶段解决零点问题有三种方法解方程法、零点存在判定定理、图像法。通过分析与讲解,掌握解决该类问题的技巧和方法,理解并体验函数与方程相互转化的数学思想,培养学生数形结合的能力。