简介:数学思想方法是数学的灵魂,数学学习的好坏主要在于对数学思想方法的掌握程度.方程思想是一种重要的数学思想,高考成绩的高低往往在于方程思想运用能力的强弱.所谓方程思想是指从分析问题的数量关系人手,将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式.用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组).这种思想在代数、几何及生活实际中有着广泛的应用.本文主要是在方程思想的指导下利用判别式来处理有关不等(范围、最值等)的问题和若干解题方向不明的问题.
简介:在解一元二次方程根与系数的各类题中.要有一个前提,就是当一元二次方程的根存在时才有这样的关系.在研究这类题型时必须要考虑一元二次方程的根是否存在,即考虑到判别式△≥0,保证根的存在.现举例如下: