简介:一、柯西不等式的一般形式设,ai,bi∈R,i=1,2,…,n,则(a_1^2+a_2^2+…+a_n^2)·(a_1^2+b_2^2+…+b_n^2)≥(a1b1+a2b2+…+anbn)^2.等号成立的条件是当且仅当ai=0,bi=λai(A为常数,i=1,2,…,n).其中,当n=2时可以得到柯西不等式的二维形式:若a,b,c,d都是实数,则(a^2+b^2)(c^2+d^2)≥(ac+bd)^2.当且仅当ad=bc时,等号成立.柯西不等式的证明方法很多,高中课本选用了学生比较熟悉的向量法,而它的应用则主要涉及在代数方面.例如,可以运用柯西不等式证明其他不等式、求有关参数的范围或函数最值等问题.
简介:〔摘要〕对形如y=ax2+bx+cx或y=ax(b-cx)型的函数求最值问题均可考虑利用基本不等式方法去解决。〔关键词〕基本不等式最值问题如果a,b均为非负数,那么a+b2≥姨ab。当且仅当a=b时不等式取等号。此不等式叫基本不等式(也叫均值不等式)。它的变形式为①a+b≥2姨ab(积一定,和有最小值)。②姨ab≤a+b2即ab≤a+b蓸2蔀2(和一定,积有最大值)利用它的变形式可以求一定形式的函数的最大(小)值问题。下边介绍几种求函数最值的方法1添项,拆项,配凑法例1设x>1,求函数y=x+2x-1的最小值。解∵x>1∴x-1>0∴y=x+2x-1=(x-1)+2x-1+1≥2(x-1)?2姨x-1+1=2姨2+1当且仅当x-1=2x-1即x=姨2+1时,ymin=2姨2+1注本题是添项法。例2设x∈R,求函数y=x2+5姨x2+2的值域。解∵x∈R∴x2≥0∴y=x2+5姨x2+2=(x2+2)+3姨x2+2=姨x2+2+3姨x2+2≥2x2+2?3姨姨x2+2=2姨3当且仅当姨x2+2=3姨x2+2即x=±1时,ymin=2姨3∴y∈2姨3,+∞)注本题为配凑法例3设x>-1,求函数y=x2+7x+10x+1的最小值。解∵x>-1∴x+1>0∴y=x2+7x+10x+1=[(x+1)-1]2+7[(x+1)-1]+10x+1=(x+1)2+5(x+1)+4x+1=(x+1)+4x+1+5≥2(x+1)?4姨x+1+5=9当且仅当x+1=4x+1即x=1时,ymin=9注本题利用配凑法