简介:首先建立了第二类Chebyshev多项式Un(x)的Landau's型不等式.利用Un(x)的正交性,建立了代数多项式pn(x)的加权Landau's型不等式,并且指出其不等式的系数在某种意义上是最好可能的.
简介:摘要:主成分分析(Principal Component Analysis, PCA)是一种常用的数据降维技术,可以有效地减少数据维度并保留数据的主要信息。然而,在传统的PCA算法中,所有特征被均等对待,可能导致对一些重要特征的忽视。为了解决这个问题,本文提出了一种基于t类加权核函数的主成分分析维度约简算法。该算法通过引入t类加权核函数来对特征进行加权,使得重要特征的贡献更大,从而更好地保留数据的主要结构和信息。
简介:给出了单位圆盘上不同加权B日舯锄空间之间的加权复合算子有界性及紧性刻划.
简介:利用上极限,给出了单位球上加权Bergman空间的加权复合算子的本性模的表示.
简介:设函数φ和Ф是复平面单位圆盘D上的解析函数且φ(D)■D,则将加权复合算子定义为Wφ,Ф:f→Фf°φ.当1
简介:刻画加权Bergman空间Aα^2(Ω)上的加权复合算子Cφ,Ф的Schatten-p类.
简介:分形维数是度量复杂网络分形特性的最重要的一个指标,其中体积维数被广泛应用于度量无权网络的分形特性。沿着无权网络体积维数的思想进一步考虑,以在给定盒子长度下覆盖到的节点强度和来定义加权网络体积维中“体积”的概念,提出了基于节点强度的加权网络体积维数,并称这种度量加权网络分形特性的维数为强度体积维。首先,利用强度体积维分析了两类具有规则分形结构的谢尔宾斯基(Sierpinski)加权分形网络和康托三角尘(CantorDust)加权分形网络,结果表明强度体积维数的值与理论计算的维数值具有非常小的误差。然后,利用强度体积维分析了3个实际加权网络的分形特性,并将结果与利用盒维数得到的结果进行比较,结果表明强度体积维也能够较好地度量实际加权网络的分形特征。