简介:摘要目的观察探讨利用胸部CT图像的征象对孤立性肺结节进行良恶性快速分类的方法,总结其临床应用价值。方法选取我院2008年12月至2010年12月58例孤立性肺结节患者,分别进行CT三维重建和经CT引导下穿刺病检,以病检结果作为金标准,分析CT三维重建的良恶性快速分类方法的准确性。结果多平面重建法(MPR)对血管集束征、细支气管气象、分叶征、胸膜凹陷征的图像显示率明显高于横断平扫(P<0.05),具有统计学意义;对于毛刺征、棘突征的图像显示率与横断平扫对比无显著差异(P>0.05),无统计学意义,对于空泡征的图像显示率明显低于横断平扫(P<0.05),具有统计学意义。结论胸部CT三维重建能有效提高恶性征象的检出率,可作为良恶性的快速分类的临床手段,但同时良性结节征象的检出率也相应提高,因此有一定的误诊率,需要进一步结合灌注、动态增强、及特异性临床表现等多种方法进行确诊。
简介:摘要:多标签图像分类是一项允许单个图像同时属于多个类别的重要机器学习任务。与单标签分类不同,多标签图像分类面临着标签间相关性、数据不平衡以及高维数据处理等挑战。随着工业界的算力提升,许多研究人员利用深度学习的强大学习能力来应对多标签图像分类中遇到的挑战,然而专门针对多标签图像分类的综合研究仍然很少。本文系统地综述了多标签图像分类的近几年的进展,首先介绍了多标签图像分类的背景以及定义,接着讨论了多标签图像分类问题挑战,然后详细回顾多标签图像分类的最新进展,其中包括了其在深度学习方面的现有研究成果,如深度卷积神经网络、Transformer,最后总结了多标签图像分类的现状。希望本文的综述能为多标签图像分类领域的研究人员和实践者提供有价值的参考和指导。
简介:摘要:近年来无监督图像分类取得了显著进展,尤其是通过对比学习和自监督学习的应用,提升了在缺少标注数据情况下的分类性能。本文综述了无监督图像分类的基本概念、方法和最新进展,重点探讨了对比学习、自编码器、视觉变换器等技术在无监督图像分类中的应用。通过比较主流的无监督方法,如SimCLR、MoCo、MAE、DINO等,本文分析了不同方法的优势和局限,展望了无监督学习在大规模图像分类任务中的应用前景。无监督学习能够有效应对数据标注困难的挑战,具有较强的泛化能力,为图像分类领域提供了有力支持。
简介:摘要:多标签图像分类是一项允许单个图像同时属于多个类别的重要机器学习任务。与单标签分类不同,多标签图像分类面临着标签间相关性、数据不平衡以及高维数据处理等挑战。随着工业界的算力提升,许多研究人员利用深度学习的强大学习能力来应对多标签图像分类中遇到的挑战,然而专门针对多标签图像分类的综合研究仍然很少。本文系统地综述了多标签图像分类的近几年的进展,首先介绍了多标签图像分类的背景以及定义,接着讨论了多标签图像分类问题挑战,然后详细回顾多标签图像分类的最新进展,其中包括了其在深度学习方面的现有研究成果,如深度卷积神经网络、Transformer,最后总结了多标签图像分类的现状。希望本文的综述能为多标签图像分类领域的研究人员和实践者提供有价值的参考和指导。
简介:摘要:本文采用DCGAN加强的方法,以garbage classify为例,探讨了DCGAN在城市生活废物中的应用。首先对DCGAN的网络进行了优化,将该网络的初始培训集合导入网络,再将该网络中产生的图象和原有的训练集合进行合并,从而形成一个新的训练集合。本法能够对数据进行高效的扩展,可以将其应用于生活垃圾的数据强化。从而实现了对垃圾的自动分类。