简介:摘要 随着人工智能技术的不断发展,深度学习正在迅速崛起.它可以把复杂的信息结构转换成更加简单易懂的模型,并且可以根据不同的模型结构,快速地提取出更多的信息,这使得它可以更好地帮助人类理解和预测未来的行业,比如图像处理、语音处理和自动驾驶。因此,将深度学习算法应用于推荐系统具有十分重要的意义。
简介:摘要:本文探讨了深度学习与机器学习算法在通信网络中的应用。首先介绍了通信网络的基本架构,包括通信设备、传输介质和通信协议等。随后,分析了深度学习与机器学习在通信网络中的多个应用场景,包括信道估计与均衡、调制识别与解调、资源分配与功率控制等方面。在信道估计与均衡方面,深度学习算法能够准确建模复杂信道特性,提高信号接收质量。在调制识别与解调方面,深度学习通过学习大量信号样本,实现准确识别和解调调制信号。资源分配与功率控制方面,深度学习算法能够智能优化资源利用,提高系统效率。接着,讨论了机器学习算法在通信网络中的应用,包括监督学习算法在网络优化、无监督学习算法在资源管理、强化学习算法在网络控制等方面的应用。
简介:摘要:深度学习已经在目标检测领域取得了显著的进展,通过自动学习特征表示和端到端的训练方式,提高了目标检测的准确性和效率。本文对基于深度学习的目标检测算法进行了综述,包括单阶段和两阶段检测器。单阶段检测器如YOLO和SSD直接在图像上进行密集预测,具有实时性和高效性,但可能存在定位不准确性。两阶段检测器如R-CNN系列通过候选区域生成和分类/定位两个阶段实现更精确的定位,但计算资源消耗较大。选择适合任务需求的检测器取决于实时性、准确性和定位要求。未来,深度学习目标检测算法将进一步发展,结合单阶段和两阶段的优势,以提高性能和效果。
简介:摘要:深度学习技术在视频监控系统中的应用已经成为当前研究的热点之一。本文介绍了基于深度学习算法的视频监控系统的设计与实现。首先,对现有的视频监控系统中存在的问题进行了分析,然后提出了使用深度学习算法来实现视频内容的实时识别和分析。接着介绍了系统的整体架构,包括视频数据的采集、预处理、深度学习模型的训练以及实时监控与报警系统的设计。在系统实现方面,采用了卷积神经网络(CNN)进行视频内容的识别和分析,结合GPU加速实现了高效的实时处理。最后,通过实验验证了系统在人脸识别、行为分析等方面的性能,结果表明基于深度学习算法的视频监控系统在实际应用中具有较高的准确性和效率。
简介:摘要:为了准确检测小麦外观品质,首先需要利用图像处理技术对采集的小麦图像进行分割,将小麦与背景分割开,粘连的小麦图像分割为单粒小麦,针对单粒小麦进行理化指标检测,因此图像分割成为小麦品质检测中至关重要的环节。但是在实际稻小麦图像分割时,存在着小麦粒本身不规则,整粒与碎粒混合以及小麦粒大小参差不齐等问题,使得在实际小麦粒图像分割过程中分割困难。本文简要陈述了目前粮食无损检测的重要性,综述了模糊C均值、分水岭算法、凹点匹配等传统图像处理方法,以及CNN、U-Net、Mask R-CNN等深度学习算法在小麦图像分割中的应用与优缺点。通过算法优化,提高了复杂粘连小麦图像的分割精度,推动了小麦品质检测的自动化进程。
简介:摘要:在无线通信系统中,由于障碍物的存在,电磁波除了直射传播之外,还可以反射、衍射和散射。当电磁波遇到比波长大的障碍物时,会发生发射和透射;电磁波入射到建筑物、墙壁和其他大型物体的边缘时,则会发生衍射的现象;而当电磁波入射到不规则物体,如粗糙表面的墙壁、车辆和树叶等,则会使电磁波在各个方向散射。