简介:求函数的定义域一般有三种类型;第一种是给出具体的函数解析式求定义域;第二种是不给出具体的函数解析式,而由f(x)的定义域,求复合函数f[g(x)]的定义域,此时采用整体考虑的方法;第三种是应用问题中求函数的定义域,此时除了考虑函数解析式有意义外,还应该考虑问题的实际意义对自变量的制约.
简介:
简介:在数学分析中,一般都用下列解析式来定义双曲正弦、双曲余弦、双曲正切和双曲余切的。这些函数为什么叫双曲函数,它们与双曲线有什么关系。为了弄清这些问题,下面用双曲线来定义双曲函数。一、双曲函数的定义
简介:本文讨论单调增加函数的广义逆函数的性质,并将其应用于随机变量的分布函数,推出了概率论中常见的两个重要定理。
简介:本文在拉氏定理的基础上又给出了函数为常量函数的几个充分条件,且很容易看出,这些条件也是必要的。
简介:根据Borel例外函数及拟Borel例外函数的概念,应用Nevanlinna理论对它们进行了进一步的研究,并给出了Borel例外函数和l级拟Borel例外函数的几个结论.
简介:构造函数和析构函数是面向对象程序设计中的难点.构造函数有三种情况,在重栽赋值运算符时一定要分清楚.动态内存应在适当的时候通过析构函数进行回收.
简介:本文给出了[1]中命题的推广,得出了更一般的结论。为便于叙述,先列出文[1]中的命题如下:设λ为非零常数,若函数f(X)满足函数方程f(X+λ)=H(f(X)),其中H(X)=H~-1(X)(即y=H(X)的反函数与其自身的表达式同形),则f(X)是以2λ为周期的周期函数。上面成立的条件有两个:一是“如果有一个函数H(X)满足H(x)=H~-1(X)”;二
简介:知识要点】本章主要内容有:集合有关概念与运算;函数概念与性质;反函数概念与图象;基本初等函数(幂函数、指数函数、对数函数)的定义、图象和性质;指数方程和对数方程;共含13个知识点.由于它们在高中数学中的显著地位和作用,高考试题中经常出现,这些知识点自...
简介:给出实例说明初等函数的导数可以是非初等函数.
简介:没有给出具体解析式的函数,称为抽象函数.由于这种表现形式的抽象性,使得直接求解思路难寻.解这类问题可以通过化抽象为具体的方法,即通过联想、分析,然后进行类比猜测,寻觅出它的函数模型,由这些函数模型的性质、法则来探索此类问题的解题思路.下面以几个常见函数为例介绍如下.
简介:在讲授多元函数求导时,对于课本上的内容及公式同学们一般能有很好的记忆,但是在做题过程中比较复杂的函数关系往往会感到摸不清头绪,不明白如何去下笔求解。通过本文讨论,希望对同学们在解决这类问题时有一定的启发。教科书中均有简单关系的求导法,如给定Z=f(u,v),u=u(x,y),v=v(x,y)我们说Z是中间变量u,v的函数,而中间变量又是自变量x,y的函数,根据
简介:分段函数的原函数概念及其积分马韵新,郭田芬在积分学中,我们知道原函数的定义是:设f(X)在给定的区间D上有定义,若存在函数F(X),在区间D内每一点X都有F’(X)=f(X),则F(X)称为f(X)在区间D内的一个原函数。从原函数定义可以看出原函数的...
简介:按照《新课程标准》的要求,分段函数在教材中尽管未给出严格的概念,但这种题型已有初步渗透,但是在目前教材和资料中尚没对其做出具体的分析和说明,这样反而使同学们在函数学习中弄得云里雾里,对函数概念的理解变得模糊起来,我们来讨论一次函数中的分段函数问题,以供同学们参考.
简介:<正>对许多数学命题的论证,若能引入一个恰当的函数,再运用已知的定理、公式,问题就可迎刃而解.然而怎样作辅助函数呢?这是学生中较为普遍地存在的困难.下面就微分中值定理的证明及其应用这个方面谈谈我对此问题的一点体会.一、用Rolle定理来证明Lagrange、Cauchy二定理的辅助函数1.Lagrange定理.设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在该区间内至少存在一点ξ:(a<ξ
简介:<正>(一)课标要求1.探索具体问题中的数量关系和变化规律.2.通过简单实例,了解常量、变量的意义.3.能结合实例,了解函数的概念和三种表示方法,能举出函数的实例.4.能结合图象对简单实际问题中的函数关系进行分析.5.能确定简单的整式、分式和简单实际问题中的
函数
圆函数与双曲函数
单调函数的广义逆函数
函数为常量函数的条件
亚纯函数的Borel例外函数及拟Borel例外函数
幂函数,指数函数,对数函数自学辅导提纲
构造函数与析构函数浅析
再谈周期函数与函数方程
一、函数
初等函数的导数是初等函数吗
正弦函数、余弦函数的图像和性质
联想函数模型解抽象函数问题
函数解析式的确定及函数的应用
具有复杂函数关系的多元函数求导法
分段函数的原函数概念及其积分
一次函数中的分段函数
谈谈辅助函数
函数复习指导