简介:本文旨在给出Banach空间值Hardy—Lorentz鞅空间的共轭空间的完全刻画.首先,对B值鞅引入了一类新的广义Lipschitz鞅空间及“原子鞅”的概念;其次,对B值Hardy-Lorentz鞅空间建立了“原子鞅”的分解定理;最后,以此为工具证明了其共轭空间是广义Lipschitz鞅空间.所得结论将已有的相应结果由实值鞅推广到Banach空间值鞅的情况.
简介:讨论了Banach空间X中带有非局部条件的半线性发展方程.在g失去紧性的条件下,利用L^p(I;X)空间中的不动点定理,对边值问题适度解的存在性做了研究,完善和推广了已有结论.最后给出一个在偏微分方程中的例子.
简介:设A:D(A)X→X是Banach空间X上的线性稠定的闭算子,它是X上的强连续有界线性算子半群S(t)的无穷小生成元.对于Banach空间X中的含非局部初值条件u(0)=u0+g(u)的半线性Cauchy问题:u’(f)=Au(t)+Bx(t)+f(t,u(t)),在A生成的线性算子半群S(t)是非紧,映射,和g满足一定的紧性条件,控制算子B是有界线性算子时,证明了该问题是非局部可控的.并分别在半群是紧或强连续的条件下,证明了在控制算子B和W不是有界情形时上面的非局部Cauchy问题是非局部可控的.同时给出了在偏微分方程中的可控性问题的一个应用.
简介:研究可分Banach空间中一类混合型的微分—积分包含,证明了解的存在性,其单值情形改进和推广了文[1~3]中关于混合型微分—积分方程的若干存在性结果。
简介:假设S(X)是Banach空间X的单位球面,作者引进了四个新的几何参数:Jε(X)=sup{βε(x),x∈S(X)},jε(X)=inf{βε(x),x∈S(X)},Gε(X)=sup{αε(x),x∈S(X)},gε(X)=inf{αε(x),x∈S(S)},其中≤ε≤1,βε(x)=sup{min{‖x+εy‖,‖x-εy‖,y∈S(X)}},αε(x)=inf{max{‖x+εy‖,‖x-εy‖,y∈S(X)}},讨论了这些参数的性质,本文主要结果是:如果主要结果是:如果有一个ε,0≤ε≤1,使得Jε(X)<1+ε/2或gε(X)>1+ε/3,那末X有一至正规结构。
简介:研究D-Cchang等人引进的五个区域Hardy空间,刻划这些空间的原子分解和对偶空间,揭示了这些空间的内在联系。