学科分类
/ 25
500 个结果
  • 简介:在Banach空间中研究非线性算子方程F(x)=0的近似求解问题.首先,把实函数数值积分的梯形公式推广到非线性泛函的Bochner积分中来,得到Bochner积分的梯形公式;然后,利用这一公式来构造牛顿迭代法的变形格式,从而得到梯形牛顿法,并在弱条件的α-判据下借助于优函数技巧证明了它的收敛性.

  • 标签: 梯形牛顿法 α-判据 优函数
  • 简介:利用锥理论和半序方法讨论一类非线性算子方程x=Ax的迭代求解问题,得到解的存在唯一性定理,并给出其应用.

  • 标签: 迭代解 非线性算子方程
  • 简介:论文研究非自反Banach空间中Hille-Yosida算子非线性Lipschitz扰动.首先,证明Hille-Yosida算子非线性Lipschitz扰动诱导的微分方程的温和解构成非线性指数有界Lipschitz半群;其次,证明非线性扰动半群保持原半群的直接范数连续性质.获得的结果是线性算子半群某些结论的非线性推广.

  • 标签: Hille-Yosida算子 非线性扰动 Lipschitz半群 直接范数连续性
  • 简介:本文介绍求解非线性方程组的4种数值方法,改进穷举法和蒙特卡洛算法,提出蒙特卡洛一穷举混合算法.应用这些数值方法求解太阳影子定位技术中提出的非线性方程组,根据数值试验结果分析各算法的优缺点;最后通过数值实例,比较各算法的求解时间和精度,验证各算法的有效性和蒙特卡洛一穷举混合算法的高效性.

  • 标签: 非线性超定方程组 穷举法 遗传算法 蒙特卡洛算法 MATLAB
  • 简介:本文研究等离子体中的高功率超短激光通道问题中出现的一类非线性Schrodinger方程,利用变分原理,把一类非线性Schrodinger方程转换为变分问题,再利用喷泉定理及对偶喷泉定理证明一类非线性Schrodinger方程存在驻波解.

  • 标签: 非线性SCHRODINGER方程 喷泉定理 对偶喷泉定理 (PS)c条件
  • 简介:在Menger概率线性赋范空间中,利用该空间中的Leray-Schauder拓扑度理论,研究非线性算子T,建立了紧连续算子了T有固有值γ和δW上存在对应于γ的固有元的一系列充分条件.同时,也改进和推广了若干个重要结论。

  • 标签: M-PN空间 紧连续算子 拓扑度 算子
  • 简介:给出了Banach空间的一个增算子不动点定理,将这一定理应用到Banach空间的积分-微分方程,给出了一类积分-微分方程的连续可微最大解和连续可微最小解的存在性定理.

  • 标签: BANACH空间 增算子 不动点 积分-微分方程
  • 简介:为了求解非线性方程f(x)=0,本文给出一个新的迭代算法,即xn+1=xn-(xn-xn-1)/(3f(xn)-4f((xn+xn-1/2)+f(xn-1)f(xn)这个新方法集弦割法和抛物线法的优势于一身,具有更快的收敛速度,已经证明:这个新方法的收敛阶至少是二阶的。

  • 标签: 非线性方程 迭代算法 收敛性 收敛阶
  • 简介:设Z为实一致光滑Banach空间,T:Z→Z为强增生映射,文章提出了新的带误差的三重迭代序列,并证明了带误差的三重迭代序列强收敛到方程Tx=f的唯一解,(带误差的)Mann迭代和(带误差的)Ishikawa迭代均可作为其特例.此外,相关结果也讨论了关于强伪压缩映射不动点的三重迭代逼近问题.

  • 标签: 三重迭代 强增生映射 强伪压缩映射 非线性增生算子 收敛性 误差
  • 简介:对Hammerstein型非线性积分方程的有限元方法进行了讨论,得到了其有限元解的超收效性。

  • 标签: 积分方程 有限元 超收敛
  • 简介:对于两端固定的一维非线性方程的初边值问题,用多重尺度法求得近似解的首项,并用能量方法结合非线性Gronwall不等式得出了近似解首项的误差的一致性估计.

  • 标签: 梁方程 初边值问题 多重尺度法 近似解
  • 简介:在工程技术以及航天技术等高科技领域中,非线性微分-差分方程有着非常广泛的应用,其对于精密计算非常重要。非线性微分-差分方程求解难度非常大。本文基于数学机械化的思想理论以及孤立子的相关概念,分析探讨基于非线性微分-差分方程的求解方式。

  • 标签: 非线性 微分-差分方程 非线性模型