简介:<正>考点解读不等式的性质及应用点击考点一不等式性质有关的问题不等式的基本性质是解不等式与证明不等式的理论根据,运用不等式的性质要切实注意不等式的性质的前提条件,防止条件的强化或弱化.
简介:疑难解析:例1:(1)已知x∈R,比较x^6+1与x^4+x^2的大小。评述:1.作差比较两式大小的一般步骤是:①作差(有时需要转化才可作差),②变形(进行因式分解、配方、化为平方式等),有时还需要根据字母的取值范围讨论差的符号,③判断差的符号。
简介:
简介:在最高项系数无界的条件下讨论了二阶椭圆型微分方程弱解的局部极大值原理及Harnack不等式.
简介:知识要点]本章内容包括不等式的性质,不等式的解法,不等式的证明,含有绝对值的不等式及不等式的应用.不等式的性质是解不等式与证明不等式的依据,是全章知识的基础,解不等式与证明不等式是全章的重点.解含参数的不等式,需对参数分类讨论;含绝对值的不等式,需去...
简介:(四)不等式四川师大附中毛树勇邓贵业等是相对的,暂时的,而不等才是绝对的,永恒的。本章首先给出不等式的一系列性质。利用这些性质证明不等式,解不等式和解决应用问题。不等式的证明主要讲了:比较法、分析法、综合法、放缩法、反证法、换元法等。要注意把握每种证...
简介:本文给出了柯西不等式的一些反向不等式。
简介:一元一次不等式与不等式组及解法、应用是初中数学的重点内容之一.也是中考所要考查的重要内容之一.同学们由于对概念、性质的理解不清或对问题的考虑不周密。往往会出现各种错误.结合教学实际。下面列举几种常见的解题错误进行分析。希望能引起同学们的注意.
简介:1.不等式及其解集,不等式的性质,解一元一次不等式(组).2.运用不等式解决实际问题.
简介:不等式(组)是解决数学问题和实际问题的有力工具,构造一次不等式(组)是一种重要的解题策略.不少数学问题表面上看似乎与不等式(组)无关.但若仔细考查其条件特征,挖掘不等量关系.均可构造出不等式(组)来解.下面分类举例介绍一些常用的构造途径,快捷求解许多问题.旨在提高同学们的构造思维方法的应用能力,培养变“相等”为“不等”和以“不等”求“相等”的转化能力.
简介:一、选择题1.如果a<0,-10且a≠1,p=a2+a-2,Q=(sinx+cosx)2,则()
简介:一、不等式的证明各种类型的绝对不等式、条件不等式的证明,虽然涉及的范围广泛,证法灵活多变,但常用的有下面几种证明方法:1.比较法这是证明不等式的基本方法。如要证A>B,可证A-B>0或B-A<0;如A>0,B>0,要证A>B,可证A/B>1或B/A<1。例1设α、β、γ是锐角三角形的三个内角,且αsin2β>sin2γ。
简介:证明不等式就是要证明所给不等式在给定条件下恒成立,依据具体的题目特征,采取比较法、综合法、分析法、反证法、放缩法、判别式法、换元法、构造函数法等方法,可以比较简捷、合理的证明不等式问题。
简介:本文给出了Greub-Rheinboldt不等式和Polya-Szego不等式的一种统一积分形式.
不等式
不等式与不等式组专题测试
不等式与不等式组自测题
Harnack不等式
三、不等式
(四)不等式
不等式与不等式组 实数自测题(A)
关于柯西不等式的反向不等式研究
不等式与不等式组错解例析
第九章 不等式与不等式组
不等式与不等式组 实数自测题(B)
构造不等式解题
不等式同步训练
不等式综合复习
不等式的证明
Greub—Rheinboldt不等式和Polya—Szego不等式的积分形式