简介:Inthispaper,weconsidertheNeumannboundaryvalueproblemofSchrodingeroperatorwithmeasurepotentia1μ.First,amartingaleformulationoftheNeumannproblemandananalyticcharacterizationofthemartingaleformulationaregiven.Then,byusingtheDirichletformsandStochasticanalysisweobtainanexplicitformulafortheuniqueweaksolotionofthisproblemintermsofreflectingBrownianmotionandit’sboundarylocaltime.
简介:本文通过变分法和临界点理论讨论了脉冲微分方程Neumann边值问题无穷多个解的存在性.
简介:Thetraditionalone-dimensionalultrasonicbeamsteeringhastimedelayandisthusacomplicatedproblem.AnumericalmodelofultrasonicbeamsteeringusingNeumannboundaryconditioninmultiplysicsispresentedinthepresentpaper.Thismodelisbasedonthediscretewavenumbermethodthathasbeenprovedtheoreticallytosatisfythecontinuousconditions.Thepropagatingangleofnovelmodelisafunctionofthedistanceinsteadofthetimedomain.Thepropagatingwavefrontsatdesiredanglesaresimulatedwiththesinglelinesourcesforplanewave.Theresultindicatesthatanybeamanglecanbesteeredbydiscretelineelementsresourceswithoutanytimedelay.
简介:SymplecticintegrationofseparableHamiltonianordinaryandpartialdifferentialequationsisdiscussed.AvonNeumannanalysisisperformedtoachievegenerallinearstabilitycriteriaforsymplecticmethodsappliedtoarestrictedclassofHamiltonianPDEs.Inthistreatment,thesymplecticstepisperformedpriortothespatialstep,asopposedtothestandardapproachofspatiallydiscretisingthePDEtoformasystemofHamiltonianODEstowhichasymplecticintegratorcanbeapplied.InthiswaystabilitycriteriaareachievedbyconsideringthespectraoflinearisedHamiltonianPDEsratherthanspatialstepsize.
简介:我们在三或四个尺寸空格与nonpositiveanisotropy常数为Landau-Lifshitz方程的非零Neumann起始边界的值问题建立存在和部分整齐的扩展结果。部分整齐被证明直到边界,这结果是对为Dirichlet问题或同类的Neumann问题的那些的重要补充。
简介:Inthispaper,westudyanddiscusstheexistenceofmultiplesolutionsofaclassofnon-linearellipticequationswithNeumannboundarycondition,andobtainatleastsevennon-trivialsolutionsinwhichtwoarepositive,twoarenegativeandthreearesign-changing.Thestudyofproblem(1.1):{-△u+αu=f(u),x∈Ω,x∈Ω,δu/δr=0,x∈δΩ,isbasedonthevariationalmethodsandcriticalpointtheory.Weformourconclusionbyusingthesub-supsolutionmethod,MountainPassTheoreminorderintervals,Leray-Schauderdegreetheoryandtheinvarianceofdecreasingflow.
简介:研究了一类线性耦合反应扩散系统通过热量扩散实现间接控制的问题。通过选取适当的Volterra变换,运用Backsteeping方法设计出具体的Neumann边界控制器,从而得到闭环系统的稳定性定理。
简介:
简介:TheexistenceandmultiplicityofpositivesolutionsarestudiedforaclassofquasilinearellipticequationsinvolvingSobolevcriticalexponentswithmixedDirichlet-Neumannboundaryconditionsbythevariationalmethodsandsomeanalyticaltechniques.
简介:导子对研究算子代数的结构起着重要的作用.文中引入了零点广义Jordan可导映射的概念,并通过对文[1方法的应用得到了如下主要结果:在vonNeumann代数中,范数连续的零点广义Jordan可导映射是内导子与一固定元与恒等映射乘积的和,并得出在Hilbert空间上的全体有界线性算子上的零点广义Jordan可导映射也有同样的结论.