简介:<正>ThetruncationequationforthederivativenonlinearSchrodingerequationhasbeendis-cussedinthispaper.TheexistenceofaspecialheteroclinicorbithasbeenfoundbyusinggeometricalsingularperturbationtheorytogetherwithMelnikov’stechnique.
简介:Abstract.Inthepresentpaper,wedealwiththelong-timebehaviorofdissipativepartialdifferenttialequations,andweconstructtheapproximateinertialmardfoldsforthenonlbaearStringerequationwithazeroorderdlssipation.Theorderofapproximationofthesemanlfoldetotheglobalattractorisderived.
简介:ThedynamicalcharacterforaperturbedcouplednonlinearSchrodingersystemwithperiodicboundaryconditionwasstudied.First,thedynamicalcharacterofperturbedandunperturbedsystemsontheinvariantplanewasanalyzedbythespectrumofthelinearoperator.Thentheexistenceofthelocallyinvariantmanifoldswasprovedbythesingularperturbationtheoryandthefixed-pointargument.
简介:Usingthewavepackettheory,weobtainallthesolutionsoftheweaklydampednonlinearSchrodingerequation.Thesesolutionsarethestaticsolution,andsolutionsofplanarwave,solitarywave,shockwaveandellipticfunctionwaveandchaos.Thebifurcationphenomenonexistsinbothsteadyandnon-steadysolutions.Thechaoticandperiodicmotionscancoexistinacertainparametricspaceregion.
简介:Itisshowninthispaperthatifparametersβ1,β2andβ3ofanonlinearSchrodingerequationwithhigherorderdispersionterms(HNLS)satisfythecondition:6β1-β2-2β3(1-6β1k)=0,karealconstant,thenthefundamentalsolitonsolutionsoftheHNLSequationexist.Theexactsolitonsolutionsaregivenandtherelationbetweenthisconditionandtheknownresultsintheliteratureisalsodiscussed.
简介:FREDHOLMDETERMINANTSOLUTIONFORNONLINEAREQUATIONSASSOCIATEDWITHISOSPECTRALSCHRODINGEREICENVALUEPROBLEMHuangLiede(黄烈德);XiaZhong...
简介:NonlinearSchrodingerequation(NSE)arisesinmanyphysicalproblems.Itisaveryimportantequation.Alotofworksstudiedthewellposed,theexistenceofsolutionofNSEetc.Andtherearemanyworksstudiedthenumericalmethodsforit.Recently,sincethedevelopmentofinfinitedimensionaldynamicsystemthedynamicalbehaviorofNSEhasbeeninvestigated.Thepaper[1]studiedthelongtimewellposedness,theexistenceofuniversalattractorandtheestimateofLyapunovexponentforNSEwithweaklydamped.Atthesametimeitwasneedtostudythelargetimenewcomputationalmethodsandtodiscussitsconvergenceerrorestimate,theexistenceofapproximateattractorsetc.InthispapewestudytheNSEwithweaklydamped(1.1).Weassume,where0<λ<2isaconstant.Ifwewishtoconstructthehigheraccuracycomputationalscheme,itwillbedifficultthatstaighfromtheequation(1.1).Thereforewestartwith(1.4)andusefullydiscreteFourierspectralmethodwithtimedifferencetodisscus
简介:在这篇论文,我们扩大印射的途径到N顺序Schroedingerequation。以扩大印射的途径,有一些任意的函数的可变分离解决方案的新家庭被导出。
简介:Inthispaper,weconsidertheevolutionofasolitonwhendissipativeloseexists.Bymeansofnon-perturbedmethod,anexactenvelopewavesolutionofnonlimearSchroedingerequationwithdissipativetermisobtained.ItisshownthatwhenГ=γ0/(1+2γot),thesolutiongivenherestillmaintainsthehyperbolicsecantprofile.