简介:AnExtendedParticleSwarmOptimizer(EPSO)isproposedinthispaper.Inthisnewalgorithm,notonlythelocalbutalsotheglobalbestpositionwillimpacttheparticle'svelocityupdatingprocess.EPSOisanintegrationofLocalBestparadigm(LBEST)andGlobalBestparadigm(GBEST)anditsignificantlyenhancestheperformanceoftheconventionalparticleswarmoptimizers.TheexperimentresultshaveprovedthatEPSOdeservestobeinvestigated.
简介:Theobjectiveofsteganographyistohidemessagesecurelyincoverobjectsforsecretcommunication.Howtodesignasecuresteganographicalgorithmisstillmajorchallengeinthisre-searchfield.Inthisletter,developingsecuresteganographyisformulatedassolvingaconstrainedIP(IntegerProgramming)problem,whichtakestherelativeentropyofcoverandstegodistributionsastheobjectivefunction.Furthermore,anovelmethodisintroducedbasedonBPSO(BinaryParticleSwarmOptimization)forachievingtheoptimalsolutionofthisprogrammingproblem.Experimentalresultsshowthattheproposedmethodcanachieveexcellentperformanceonpreservingneighboringco-occurrencefeaturesforJPEGsteganography.
简介:Particleswarmoptimizer(PSO),anewevolutionarycomputationalgorithm,exhibitsgoodperformanceforoptimizationproblems,althoughPSOcannotguaranteeconvergenceofaglobalminimum,evenalocalminimum.However,therearesomeadjustableparametersandrestrictiveconditionswhichcanaffectperformanceofthealgorithm.Inthispaper,thealgorithmareanalyzedasatime-varyingdynamicsystem,andthesufficientconditionsforasymptoticstabilityofaccelerationfactors,incrementofaccelerationfactorsandinertiaweightarededuced.Thevalueoftheinertiaweightisenhancedto(fi1,1).Basedonthededucedprincipleofaccelerationfactors,anewadaptivePSOalgorithm-harmoniousPSO(HPSO)isproposed.FurthermoreitisprovedthatHPSOisaglobalsearchalgorithm.Intheexperiments,HPSOareusedtothemodelidentificationofalinearmotordrivingservosystem.AnAkaikeinformationcriteriabasedfitnessfunctionisdesignedandthealgorithmscannotonlyestimatetheparameters,butalsodeterminetheorderofthemodelsimultaneously.TheresultsdemonstratetheeffectivenessofHPSO.
简介:复杂地球物理的数据的倒置总是解决多参数,非线性、多模式的优化问题。寻找最佳的倒置答案类似于当寻找食物时,在象鸟和蚂蚁那样的群观察的社会行为。在这篇文章,首先,粒子群优化算法详细被描述,并且蚂蚁殖民地算法改善了。然后,方法被用于地球物理的倒置问题的三种不同类型:(1)对噪音敏感的一个线性问题,(2)线性、非线性的问题的同步倒置,并且(3)一个非线性的问题。结果验证他们的可行性和效率。与常规基因算法相比并且退火模仿,他们有更高的集中速度和精确性的优点。与伪相比--牛顿方法和Levenberg-Marquardt方法,他们与克服局部地最佳的答案的能力更好工作。
简介:TherearesomeadjustableparameterswhichdirecdyinfluencetheperformanceandstabilityofParticleSwarmOp-ttimizationalgorithm.Inthispaper,stabilitiesofPSOwithconstantparametersandtime-varyingparametersareanalyzedwithoutLipschitzconstraint.Necessaryandsufficientstabilityconditionsforaccelerationfactorψandinertiaweightwarepresented.Exper-imentsonbenchmarkfunctionsshowthegoodperfomanceofPSOsatisfyingthestabilitycondition,evenwithoutLipschitzcon-straint.Andtheinertiaweightwvalueisenhancedto(-1,1).
简介:Acceleratingtheconvergencespeedandavoidingthelocaloptimalsolutionaretwomaingoalsofparticleswarmoptimization(PSO).TheverybasicPSOmodelandsomevariantsofPSOdonotconsidertheenhancementoftheexplorativecapabilityofeachparticle.Thusthesemethodshaveaslowconvergencespeedandmaytrapintoalocaloptimalsolution.Toenhancetheexplorativecapabilityofparticles,aschemecalledexplorativecapabilityenhancementinPSO(ECE-PSO)isproposedbyintroducingsomevirtualparticlesinrandomdirectionswithrandomamplitude.Thelinearlydecreasingmethodrelatedtothemaximumiterationandthenonlinearlydecreasingmethodrelatedtothefitnessvalueofthegloballybestparticleareemployedtoproducevirtualparticles.TheabovetwomethodsarethoroughlycomparedwithfourrepresentativeadvancedPSOvariantsoneightunimodalandmultimodalbenchmarkproblems.ExperimentalresultsindicatethattheconvergencespeedandsolutionqualityofECE-PSOoutperformthestate-of-the-artPSOvariants.
简介:Inordertodesignacomplexlaserresonatorwithmulti-parameters,themethodofparticleswarmoptimization(PSO)algorithmisemployed.Theparametersinfluencingtheresonatorstabilityandmodesizedistributionaretakenintoconsideration,andthestabilitycriteriaindexandthemodesizedistributionareusedastargetvalues.TheabsolutevaluesofthedifferencesbetweenpracticalandthetargetvaluesaresetasthefitnessfunctionforthePSO.Byminimizingthefitnessfunction,alaserresonatorwiththeoptimizedcavityparameterscanbefound.TheanalysesforthedesignexampledemonstratethefeasibilityandvalidityofthePSOmethodinthecomputeraideddesignofmul-ti-parameterslaserresonator.ApplyingPSOalgorithmintheintelligentdesignofsolidstatelaserresonatorscanrealizethe.transitionfrommanualtrial-and-errortocomputerintelligentdesignofthelaserresonators.
简介:Energyconsumptionofsensornodesisoneofthecrucialissuesinprolongingthelifetimeofwirelesssensornetworks.Oneofthemethodsthatcanimprovetheutilizationofsensornodesbatteriesistheclusteringmethod.Inthispaper,weproposeagreenclusteringprotocolformobilesensornetworksusingparticleswarmoptimization(PSO)algorithm.Wedefineanewfitnessfunctionthatcanoptimizetheenergyconsumptionofthewholenetworkandminimizetherelativedistancebetweenclusterheadsandtheirrespectivemembernodes.Wealsotakeintoaccountthemobilityfactorwhendefiningtheclustermembership,sothatthesensornodescanjointheclusterthathasthesimilarmobilitypattern.Theperformanceoftheproposedprotocoliscomparedwithwell-knownclusteringprotocolsdevelopedforwirelesssensornetworkssuchasLEACH(low-energyadaptiveclusteringhierarchy)andprotocolsdesignedforsensornetworkswithmobilenodescalledCM-IR(clusteringmobility-invalidround).Inaddition,wealsomodifytheimprovedversionofLEACHcalledMLEACH-C,sothatitisapplicabletothemobilesensornodesenvironment.SimulationresultsdemonstratethattheproposedprotocolusingPSOalgorithmcanimprovetheenergyconsumptionofthenetwork,achievebetternetworklifetime,andincreasethedatadeliveredatthebasestation.
简介:由于他们的结构上的二金属的nanoparticles(NP)的化学、物理的性质的依赖,他们的结构的特征的基本理解为他们的综合体和宽应用是关键的。在这篇文章,Au-Pd二金属的NP的系统的原子水平的调查被在不同Au/Pd比率和不同尺寸与量修正Sutton陈潜力(Q-SC)使用改进粒子群优化(IPSO)进行。在IPSO,模仿的退火被介绍进古典粒子群优化(PSO)改进有效性和可靠性。另外,结构的稳定性和结构的特征上的起始的结构,粒子尺寸和作文的影响也被学习。模拟结果表明起始的结构在稳定的结构上有小效果,但是极大地影响收敛的率,并且起始的结构清楚地是的混合的集中率快核心壳和阶段比那些组织。我们发现Au-PdNP比较喜欢结构与在外部层Au富有当时在内部的Pd富有。特别,当Au/Pd比率是6:4时,nanoparticle(NP)的结构介绍标准化Pd核心Au壳结构。
简介:Awayofresolvingspreadingcodemismatchesinblindmultiuserdetectionwithaparticleswarmoptimization(PSO)approachisproposed.IthasbeenshownthatthePSOalgorithmincorporatingthelinearsystemofthedecorrelatingdetector,whichistermedasdecorrelatingPSO(DPSO),cansignificantlyimprovethebiterrorrate(BER)andthesystemcapacity.Asthecodemismatchoccurs,theoutputBERperformanceisvulnerabletodegradationforDPSO.Withablinddecorrelatingscheme,theproposedblindDPSO(BDPSO)offersmorerobustcapabilitiesoverexistingDPSOundercodemismatchscenarios.
简介:Aimingtoreducethecomputationalcostsandconvergetoglobaloptimum,anovelmethodisproposedtosolvetheoptimizationofacostfunctionintheestimationofdirectionofarrival(DOA).Inthismethod,ageneticalgorithm(GA)andfuzzydiscreteparticleswarmoptimization(FDPSO)areappliedtooptimizethedirectionofarrivalandpowerparametersofthemodesimultaneously.Firstly,theGAalgorithmisappliedtomakethesolutionfallintotheglobalsearching.Secondly,theFDPSOmethodisutilizedtonarrowdownthesearchfield.InFDPSO,achaoticfactorandacrossovermethodareaddedtospeeduptheconvergence.Thisapproachhasbeendemonstratedthroughsomecomputationalsimulations.ItisshownthattheproposedalgorithmcanestimateboththeDOAandthepowersaccurately.Itismoreefficientthansomepresentmethods,suchastheNewton-likealgorithm,Akaikeinformationcritical(AIC),particleswarmoptimization(PSO),andgeneticalgorithmwithparticleswarmoptimization(GA-PSO).
简介:OptimalformationreconfigurationcontrolofmultipleUninhabitedCombatAirVehicles(UCAVs)isacomplicatedglobaloptimumproblem.ParticleSwarmOptimization(PSO)isapopulationbasedstochasticoptimizationtechniqueinspiredbysocialbehaviourofbirdflockingorfishschooling.PSOcanachievebetterresultsinafaster,cheaperwaycomparedwithotherbio-inspiredcomputationalmethods,andtherearefewparameterstoadjustinPSO.Inthispaper,weproposeanimprovedPSOmodelforsolvingtheoptimalformationreconfigurationcontrolproblemformultipleUCAVs.Firstly,theControlParameteri-zationandTimeDiscretization(CPTD)methodisdesignedindetail.Then,themutationstrategyandaspecialmutation-escapeoperatorareadoptedintheimprovedPSOmodeltomakeparticlesexplorethesearchspacemoreefficiently.Theproposedstrategycanproducealargespeedvaluedynamicallyaccordingtothevariationofthespeed,whichmakesthealgorithmexplorethelocalandglobalminimathoroughlyatthesametime.SeriesexperimentalresultsdemonstratethefeasibilityandeffectivenessoftheproposedmethodinsolvingtheoptimalformationreconfigurationcontrolproblemformultipleUCAVs.