简介:通过构造示性函数,利用示性函数与概率的关系对Chebyshev不等式、期望等几个问题给出新的证明方法.
简介:利用锥上的Krasnoselskii不动点定理,证明了二阶非线性具特征值问题的脉冲微分方程正解的存在性.
简介:●目标检测因式分解(A)一、填空题(1)提公因式法、公式法、分组分解法、十字相乘法;(2)4;(3)-4x;(4)m2-2m+4;(5)x+1、x-1;(6)ax-6;(7)a-3;(8)y、5y;(9)25;(10)原式=25(5022-4982)=25(502+498)(502-498)=25×1000×4=100000.二、选择题(1)D;(2)x4-81=(x2+9)(x+3)(x-3),x3-27=(x-3)(x2+3x+9),x2-6x+9=(x-3)2,所以公因式是x-3,选B;(3)A;(4)D;(5)B;(6)C;(7)C;(8)D.三、把下列各式分解因式(1)8a2-2b2
简介:设D=(y(D),A(D))是一个强连通有向图.弧集SA(D)称为D的k-限制性弧割,如果D-S中至少有两个强连通分支的阶数大于等于后.最小k-限制性弧割的基数称为k-限制性弧连通度,记作Ak(D).k-限制性点连通度Kk(D)可以类似地定义.有k-限制性弧割(k-限制性点割)的有向图称为λk-连通(kk-连通)有向图.本文研究有向图D的限制性弧连通度和其线图L(D)的限制性点连通度的关系,证明了对任意λk-连通有向图D,kk(L(D))≤λk(D),当k=2,3时等式成立;若L(D)是Kk(k-1)连通的,则λk(D)≤Kk(k-1)(L(D));特别地,若D是一个定向图且L(D)是Kk(k-1)/2.连通的,贝0Ak(D)≤Kk(k-1),2(L(D)).
简介:建立了一维p-laplacian方程(1)的一切解均为非振动的必要条件.所得定理改进了Kusano等在文[4]中的相应结果.