简介:摘要:截至2020年底,并网风电装机容量28153万千瓦,增长34.6%,占全国电源总装机容量的12.8%。在高速发展的背后却隐藏着急需解决的安全隐患,而风电机组漏油就是其中最为严重的问题,轻则污染机舱环境、重则引起整个机组火灾,及倾斜与倒塌。因为油具有难以挥发性及粘性的物理特性,通过传感器的方式进行检测,不能复位并实现持续检测。只有通过机器视觉即视频技术手段才能实现非接触式可持续检测,因为机舱内具有相对均衡的光线环境,相对恒定的测量距离,相对静止的参照背景等三个有利条件,通过卷积神经网络深度学习方法,对舟山二十台风电机组几十万张现场照片进行训练,并通过高性能人工神经元网络单元(NPU)进行运算,形成了产品化解决方案并成功应用到项目中。
简介:【摘要】电商库存补单是电商资金运转的一大难题,科学的补充订单和解决库存深度问题能加强电商供应链体系建设,帮助电商加速资金流动,减少库存压力,降低存储成本。本文针对传统的农产品销量预测模型方法的难点和新时代背景下农产品预测市场的需求,根据气候、时间、价格和质量、销售区域五个因素,利用LM算法优化了bp神经网络,并对贵州省威宁县荞酥的未来几天农产品销量建立了相应的网络模型,进行预测实验。结果表明该模型的预测精度较为准确,可以进行预测实验。