学科分类
/ 25
500 个结果
  • 简介:线性方程组理论的求解中,巧妙地运用MATHEMATICA(software)软件,不仅使学生更深层次地理解了线性方程组的基本理论,还完成了高等代数课程与计算机技术的融合,激发了学生的学习兴趣,培养了学生的逻辑思维和动手能力,真正达到学以致用。本文尝试运用MATHEMATICA软件的一些符号计算功能来验证线性方程组的求解问题。

  • 标签: MATHEMATICA 符号运算功能 线性方程组
  • 简介:本文证明了方程组(In+AB)x=0和(In+BA)x=0解的个数是一致的。

  • 标签: 线性方程组 矩阵
  • 简介:考虑二阶常系数线性微分方程的降阶法.首先,写出二阶齐次常系数线性微分方程的特征方程,求出特征方程的两个特征根;然后,利用积分因子乘以微分方程和导数的运算,将二阶常系数线性微分方程化为一阶微分形式;最后,将一阶微分形式两边同时积分,求解一阶线性微分方程,可求得二阶常系数线性微分方程的一个特解或通解.利用降阶法,可以求得微分方程的一个特解或通解.其计算方法简单和方便,在实际中具有应用价值。

  • 标签: 二阶常系数线性微分方程 降阶法 特征根 一阶微分形式
  • 简介:A∈Cmxn,T为Cn的子空间.本文给出了约束线性方程组Ax=b(x∈T)的唯一解的Cramer法则,同时也给出了一些相容或不相容线性方程组在一定意义下解的Cramer法则.

  • 标签: 约束线性方程组 CRAMER法则
  • 简介:给出了一种求解线性互补问题的微分方程方法。首先利用投影算子构造了线性互补问题的能量函数;其次利用该函数构造了微分方程系统,并证明了该系统的平衡点集等于线性互补问题的解集;接着给出了微分方程系统的稳定性证明及算法的全局收敛性证明;最后利用数值算例验证了算法的有效性。

  • 标签: 线性互补问题 微分方程方法 全局收敛
  • 简介:利用线性代数中有关行列式的知识以及微分方程方程组之间的转化方法,得到相关的两个新结论,不但丰富了这一模块的理论内容,也填补了其实用性不足的缺陷。

  • 标签: 高阶线性微分方程 行列式 方程组
  • 简介:研究带有转向点的奇摄动非线性边值问题{εy″=f(t,y,y,′ε,μ)(a〈t〈b)、y(a,ε,μ)=A(ε,μ),y(b,ε,μ)=B(ε,μ)的解的存在性与渐近性质,以及摄动解关于退化解的误差估计.

  • 标签: 小参数 转向点 奇异摄动 非线性微分方程
  • 简介:研究一类非线性双曲方程utt-M∫Ω|u|2dx△u=|u|αu的初边值问题局部解的存在性和唯一性.利用Galerkin方法和改进的势井理论得到:当M(r)和α满足一定条件,且初值充分小时,方程存在局部解.

  • 标签: GALERKIN方法 SOBOLEV嵌入定理 局部解存在性 唯一性
  • 简介:采用多核技术。通过使用Win32API、OpenMP、MPI三种并行模式将求解非线性方程的蒙特卡洛方法的串行方法并行化,得到5种并行化方法。根据数值试验结果,对各种并行方法进行比较,发现Win32API并行模式计算速度最快,最终将结论加以推广。

  • 标签: 多核 并行计算 WIN32API OPENMP MPI
  • 简介:考虑具常数特征拟线性双曲型方程,提出一个新的可化约方程组的方法,证明了具常特征方程组Cauchy问题经典解的整体存在性定理.同时构造一些例子说明一些有趣的现象.

  • 标签: 常数特征 拟线性双曲型方程组 经典解 奇性
  • 简介:讨论了非线性薛定谔方程在海森堡绘景和薛定谔绘景中的变换、系统哈密顿量的物理意义,以解析解及数值解的方式计算了多体系统的能量随时演化关系,证明了非线性薛定谔方程虽然具有薛定谔绘景的形式,但实质是海森堡绘景中的动力学方程

  • 标签: 非线性薛定谔方程 海森堡绘景 薛定谔绘景
  • 简介:分析了非线性SanVenant方程组的解的特性,并在统一考虑阻力项的影响的基础上,分析了用Pressmainn格式求解非线性SanVenant方程组的数值稳定性和收敛性.研究了φ和θ不同取值情况下,差分方程数值解的收敛情况与相对时间步长(Δt)/(Δx)和相对波长L/(Δx)的关系.指出数值解总是存在衰减和弥散现象,在实际模拟过程中,应合理选择φ和θ值,以兼顾数值衰减幅度和模拟速度.

  • 标签: 非线性 稳定性 收敛性
  • 简介:二阶变系数齐次线性方程:d^2y/dx^2+p(x)dy/dx+q(x)y=0,(其中p(x),q(x)εc′)……(1)与相应的黎卡提方程:dy/dx+p(x)y+y^2+q(x)=0……(2)的解之间存在着重要的关系,即定理1和定理2,开辟了方程(1)和(2)关系研究的途径,并作出了九个推论,其中若干个重要的结论与文中结论相同。

  • 标签: 特解通解公式 充要条件 黎卡提(Riccati)方程
  • 简介:摘要:把握以上定义,我们的入手点为“存在”,存在即可以找到、可以求出,于是只要求出齐次线性方程(1)的解,其中k1,k2,…ks为未知数。若求得k1=…=ks=0,则向量组a1,a2,…as线性无关;若有多解,即存在一组不全为零的实数k1,k2,…k使得(1)式成立,则向量组a1,a2,…as线性相关关键词:公共基础感性认识理性把握引言线性代数作为一门公共基础课,给人的感觉是概念较多,较抽象难以理解,另一方面,目前国内的独立院校不断地删减课时,用较少的课时把复杂的问题讲清楚、讲明白并能引起学生的兴趣就显的非常重要。这里我们重点介绍第三章“线性方程组与初等变换”一点教学心得……

  • 标签: 初等变换教学 教学思考 线性方程组初等变换
  • 简介:在分析GMRES-DR的基础上,将加权技术和GMRES-DR算法结合,从而加快GMRES-DR算法的收敛速度,并从理论上证明了加权GMRES-DR算法的每次循环生成仍是Krylov子空间,此外数值试验验证了该算法的有效性.

  • 标签: 线性方程组 加权技术 GMRES-DR
  • 简介:本文对任意线性方程组AX=B(A∈R(n×m),B∈Rn),在文[1]基础上给出了一种迭代算法。其收敛速度比文[1]方法快,并证明了该算法的收敛性。最后,通过几个算例说明了本文算法的有效性。

  • 标签: 解线性方程组 迭代解法 迭代格式 迭代算法 正定阵 对称阵
  • 简介:运用常数变易法研究三类二阶变系数线性微分方程的求解问题,给出了可求得其解的判别条件和相应的通解公式,从而提供了求解变系数线性微分方程的新途径。

  • 标签: 变系数 线性微分方程 恰当方程 通解