简介:在线性方程组理论的求解中,巧妙地运用MATHEMATICA(software)软件,不仅使学生更深层次地理解了线性方程组的基本理论,还完成了高等代数课程与计算机技术的融合,激发了学生的学习兴趣,培养了学生的逻辑思维和动手能力,真正达到学以致用。本文尝试运用MATHEMATICA软件的一些符号计算功能来验证线性方程组的求解问题。
简介:考虑二阶常系数线性微分方程的降阶法.首先,写出二阶齐次常系数线性微分方程的特征方程,求出特征方程的两个特征根;然后,利用积分因子乘以微分方程和导数的运算,将二阶常系数线性微分方程化为一阶微分形式;最后,将一阶微分形式两边同时积分,求解一阶线性微分方程,可求得二阶常系数线性微分方程的一个特解或通解.利用降阶法,可以求得微分方程的一个特解或通解.其计算方法简单和方便,在实际中具有应用价值。
简介:研究一类非线性双曲方程utt-M∫Ω|u|2dx△u=|u|αu的初边值问题局部解的存在性和唯一性.利用Galerkin方法和改进的势井理论得到:当M(r)和α满足一定条件,且初值充分小时,方程存在局部解.
简介:二阶变系数齐次线性方程:d^2y/dx^2+p(x)dy/dx+q(x)y=0,(其中p(x),q(x)εc′)……(1)与相应的黎卡提方程:dy/dx+p(x)y+y^2+q(x)=0……(2)的解之间存在着重要的关系,即定理1和定理2,开辟了方程(1)和(2)关系研究的途径,并作出了九个推论,其中若干个重要的结论与文中结论相同。
简介:摘要:把握以上定义,我们的入手点为“存在”,存在即可以找到、可以求出,于是只要求出齐次线性方程(1)的解,其中k1,k2,…ks为未知数。若求得k1=…=ks=0,则向量组a1,a2,…as线性无关;若有多解,即存在一组不全为零的实数k1,k2,…k使得(1)式成立,则向量组a1,a2,…as线性相关关键词:公共基础感性认识理性把握引言线性代数作为一门公共基础课,给人的感觉是概念较多,较抽象难以理解,另一方面,目前国内的独立院校不断地删减课时,用较少的课时把复杂的问题讲清楚、讲明白并能引起学生的兴趣就显的非常重要。这里我们重点介绍第三章“线性方程组与初等变换”一点教学心得……