简介:本文研究了Hilbert空间L^2(R^2)上由势函数V(x)(V≥0,连续)给出的一类Schrǒdinger算子H=-△+V的谱。本文的主要结果:(1)H的谱σ(H)不会出现本性谱与离散谱交替出现的情况,其谱要么是离散的,要么从infσcos(H)开始全是本性谱;(2)lim‖x‖→∞V(x)=∞是σcos(H)=φ的充要条件。(3)借助于讨论H的Zhis-lin谱,在一定的条件下。lim‖x‖→∞V(x)=0是σcos(H)=[∞,0)的充要条件。我们还提出了几个没有解决的问题。
简介:文[1]提出一个问题:"如果李代数L的所有幂零子代数都是交换子代数,那么L是否在它的每个理想上可分?"并给出一个反例说明该问题一般不成立.本文就是从分析该反例入手,说明问题不成立的原因,并给出该问题成立的条件,从而在一般情况下给出基本李代数的一个等价刻画.