简介:将所有维数的Beltrami方程组D^4f·Df=J^2/2G化为一个“Beltrami方程”并利用它研究了Bel-trami方程组的解的正则性,得到一个比文献[8]更大的正则性区间。
简介:针对嫦娥三号软着陆轨道设计与控制策略问题,在合理假设的前提下,建立动力学模型,求解得到了嫦娥三号着陆准备轨道近月点和远月点的速度。针对软着陆过程的6个阶段,通过受力分析,建立了嫦娥三号运动的微分方程模型,以燃料消耗最小为优化目标,以每个阶段的起止状态为约束条件,将软着陆轨道的优化设计问题转化为主发动机推力的泛函极值问题,并将其控制函数转化为近似的多项式函数优化问题。运用四阶Runge-Kutta差分迭代方法进行求解计算,从而得到各个阶段的最优控制函数和控制策略。结果表明,嫦娥三号软着陆过程耗时695s,消耗燃料1269.1kg。
简介:设H是特征为零的代数闭域k上的半单Hopf代数.本文证明了如果dimkH是小于351的奇数,则H是Frobenius型Hopf代数.
简介:分别以Bemstain多项式以及准均匀B样条为基函数,来逼近线性高振荡常微分方程。通过求解基函数对应的系数方程组,得到方程的近似解。通过数值实验表明用准均匀B样条函数的逼近效果要比Bemstain多项式要好。
简介:用辛几何的观点得到了四阶杆振动方程的一族十字架辛格式,对于四阶杆振动方程的稳定条件不一定随时间方向的精度的提高而放宽,而随空间方向精度的提高稳定范围缩小.数值例子表明单辛算法具有良好的数值稳定性.