简介:针对单一特征步态识别率低的问题,提出一种将步态能量图(GaitEnergyImage,GEI)中动态部分和Gabor小波特征融合的步态识别算法.首先,通过运动目标检测及二值化和形态学处理等预处理操作得到步态轮廓图,再进一步从步态轮廓图计算得到步态能量图,并从中分割出动态部分.然后,利用Gabor小波从步态能量图的动态部分中提取不同角度的信息,将两步态特征融合在一起,对融合后得到的特征向量用改进的KPCA方法进行降维.最后,将降维后的融合特征向量输入到基于多分类的支持向量机(SupportVectorMachine,SVM)中,从而完成步态的分类和识别.经过在中国科学院自动化研究所CASIA步态数据库上进行实验,取得了很好的识别效果,实验结果表明,与单一特征的步态识别方法相比,融合后算法的识别率提高了约10%.
简介:在中国高校科技期刊研究会组织的“2018年度中国高校杰出·百佳·优秀科技期刊”遴选活动中,《中国计量大学学报》被评为“2018年度中国高校编辑出版质量优秀科技期刊”这次评选活动旨在不断提升高校科技期刊的创新力、影响力、贡献力和编辑出版质量,对高校科技期刊在科研活动和学术交流中的作用及其质量做出客观、全面的评价,以树立榜样、明确方向,促进高校科技期刊健康发展.其中,中国高校编辑出版质量优秀科技期刊的评选是在差错率低于万分之一的前提下,结合期刊的学术指标和学术影响力,由专业评审组对期刊的政治、编辑出版质量进行综合审查,评选出中国高校编辑出版质量优秀科技期刊53种.