简介:通过解Mathieu方程得出了“自由电子模型”的能级和波函数,其解比用微扰法得出的结果更精确。结果表明,微扰势只使那些级数为n=3k(k=1,2,3…)的能级发生分裂,简并消除
简介:本文讨论了强G-半预不变凸函数,它是强预不变凸函数与强G-预不变凸函数的真推广.首先,举例说明了强G-半预不变凸函数的存在性;然后,借助集合稠密性原理,获得了强G-半预不变凸函数的一个充要条件;最后,得到强G-半预不变凸函数在一定假设(在闭半连通集上)下的下确界就是函数在此集合上的最小值,所得结果推广并改进了相应文献中的结果.
简介:利用平方凸函数与凸函数的关系,证明了平方凸函数单侧导数的存在性和单调性,建立了平方凸函数与其单侧导数的不等式关系.在此基础上,给出平方凸函数定积分已有下界的改进和新的下界.给出由平方凸函数Hermite-Hadamard型不等式生成的差值的估计.
简介:关于二元函数在一点的全微分存在的判别条件,一般教科书都是要求两个一阶偏导数在该点处连续(参见[1])。文献[2]削弱了这个条件,只要求其中一个一阶编导在该点处连续,文献[3]给出了全微分存在的另一个条件:要求两个一阶偏导数在该点的一个邻域内存在(但不要连续),及在邻域内至少存在一个有界的二阶混合偏导数。容易说明,〔2〕、〔3〕中判别条件的适用范围并不完全一样.从而〔2〕、〔3〕给出的都只是充分条件而非必要条件.讫今为止,尚未见到关于全微分存在的充分必要条件.本文将偏导数和全微分联系考虑,得到一个全微分存在的充分必要条件.作为这个充要条件的推论,可立即得出〔2〕、〔3〕中的判别条件.