简介:利用Leggett—Williams不动点定理,研究了二阶时滞微分方程边值问题{y"(t)+f(t,y(t-τ))=0,0〈t〈2π;y(t)=0,-τ≤t≤0;y(0)=y(2π)正解的存在性.其中0〈r〈π/2为一常数.我们先建立了该问题至少存在两个正解的充分条件.接着给出其至少存在三个正解的存在定理.
简介:通过构造一个特殊的锥,利用锥上的不动点指数,研究了Banach空间中二阶三点奇异边值问题多个正解的存在性.
简介:本文讨论形如AnX—ACnX的方程,其中An是一个对称三对角矩阵,Cn是一个对角矩阵.对矩阵An进行3×3分块,给定An的一个非顺序主子阵Ar+1,r+s,给定Cn和四个向量X1=(x1,…,xr),X3=(xr+s+1,…+,xn)Y1=(y1,…,y1),Y3=(yr+s+1,…,yn)'和两个不同实数A,P,构造一个对称三对角矩阵A。和两个向量X2=(Xr+1,…,Xr+x)',Y2=(yr+1,…,yr+s)’,满足AnX=λCnX和AnY=μCnY,其中X=(X1,X2,X3,Y=(Y1,Y2,Y3)本文给出问题有解的条件,解的表达式和相应算法,并给出数值算例验证算法的有效性.