简介:借鉴无约束优化问题的BFGS信赖域算法,建立了非线性一般约束优化问题的BFGS信赖域算法,并证明了算法的全局收敛性.数值实验表明,算法是有效的.
简介:本文引进了单位圆盘内与对称点有关的近于凸函数新子类Cs(α,μ,A,B),用初等方法讨论了该类中函数的Fekete-Szego问题,所得结论推广了一些作者的相关结果.
简介:在一致凸的Banach空间中,采用新的证明方法研究了严格渐近伪压缩映象和渐近非膨胀映象带误差的修正的Mann和Ishikawa迭代程序的收敛性问题,不要求定义域、值域有界,且迭代系数更简单.
简介:有限元模型修正是一类特殊的二次反特征值问题.我们将有限元模型修正看成二次规划问题来解决,并采用非线性Gauss-Seidel方法来求解其相应的Lagrange对偶函数.最后,给山的数值文验说明方法的有效性.
简介:设H是一实Hillber空间,K是H之一非空间凸子集,设(Ti)i=1^N是N个Lipschitz伪压缩映象使得F=∩i=1^NF(Ti)≠Ф,其中F(Ti)={x∈K:Tix=x}并且{αn}n=1∞,{βn}n=1^∞包含[O,1]是满足如下条件的实序列(i)∑n=1^∞(1-αn)^2=+∞;(ii)limn→∞(1-αn)=0;(iii)∑n=1^∞(1-βn)〈+∞;(iv)(1-αn)L^2〈1,arbitaryn≥1;(v)αn(1-βn)^2+αm[βn+L(1-βn)-]^2〈1,其中L≥1是{Ti}i=1^N的公共Lipschitz常数,对于x0∈K,设{xn}n=1^∞是由下列定义的复合隐格式迭代xN=αnxn-1+(1-αn)Tnyn,yn=βnxn+(1-βn)Tnxn,其中Tn=TnmodN,则(i)limn→∞||xn-p||存在,对于所有的p∈F;(ii)limn→∞d(xn,F)存在,其中d(xn,F)=infp∈F||xn-p||;(iii)limn→∞inf||xn-Tnxn||=0.本文的结果推广并且改进H—K.Xu和R.G.Ori在2001年的结果和Osilike在2004年的结果,并且在这篇文章中,主要的证明方法也不同与H—K.Xu和Osilike的方法.