简介:ThegeneralresultsonconvergenceoftheIshikawaiterationprocedureswitherrorsforLipschitzianφ-strongpseudo-contractionsandnonlinearoperatorequationsofφ-stronglyaccretivetypeisestablishedinarbitraryBanachspaces.Asthedirectapplications,somestabilityresultsoftheIshikawaiterationmethodsforψ-strongpseudo-contractionsandnonlinearoperatorequationsofφstrnglyaccretivetypearealsogiven.OurresultsinthispaperimproveandextendtherecentresultsduetoOsilikeandotherauthors.
简介:Inordertogiveacompleteandaccuratedescriptionaboutthesensitivityofefficientportfoliostochangesinassets'expectedreturns,variancesandcovariances,thejointeffectofestimationerrorsinmeans,variancesandcovariancesontheefficientportfolio'sweightsisinvestigatedinthispaper.Itisprovedthattheefficientportfolio'scompositionisaLipschitzcontinuous,differentiablemappingoftheseparametersundersuitableconditions.Thechangerateoftheefficientportfolio'sweightswithrespecttovariationsaboutriskreturnestimationsisderivedbyestimatingtheLipschitzconstant.Ourgeneralquantitativeresultsshowthattheefficientportfolio''sweightsarenormallynotsosensitivetoestimationerrorsaboutmeansandvariances.Moreover,wepointoutthoseextremecaseswhichmightcausestabilityproblemsandhowtoavoidtheminpractice.Preliminarynumericalresultsarealsoprovidedasanillustrationtoourtheoreticalresults.
简介:Thispaperstudiesthemodel-robustdesignproblemforgeneralmodelswithanunknownbiasorcontaminationandthecorrelatederrors.ThetrueresponsefunctionisassumedtobefromareproducingkernelHilbertspaceandtheerrorsarefittedbytheqthordermovingaverageprocessMA(q),especiallytheMA(1)errorsandtheMA(2)errors.Inbothsituations,designcriteriaarederivedintermsoftheaverageexpectedquadraticlossfortheleastsquaresestimationbyusingaminimaxmethod.Acaseisstudiedandtheorthogonalityofthecriteriaisprovedforthisspecialresponse.Therobustnessofthedesigncriteriaisdiscussedthroughseveralnumericalexamples.
简介:InthispaperthelimitingdistributionoftheleastsquareestimatefortheautoregressivecoefficientofanearlyunitrootmodelwithGARCHerrorsisderived.Sincethelimitingdistributiondependsontheunknownvarianceoftheerrors,anempiricallikelihoodratiostatisticisproposedfromwhichconfidenceintervalscanbeconstructedforthenearlyunitrootmodelwithoutknowingthevariance.Togainanintuitivesensefortheempiricallikelihoodratio,asmallsimulationfortheasymptoticdistributionisgiven.
简介:ThevalueofaEuropeanoptionsatisfiestheBlack-Scholesequationwithappropriatelyspecifiedfinalandboundaryconditions.Wetransformtheproblemtoaninitialboundaryvalueproblemindimensionlessform.Therearetwoparametersinthecoefficientsoftheresultinglinearparabolicpartialdifferentialequation.Forarangeofvaluesoftheseparameters,thesolutionoftheproblemhasaboundaryoraninitiallayer.Theinitialfunctionhasadiscontinuityinthefirst-orderderivative,whichleadstotheappearanceofaninteriorlayer.Weconstructanalyticallytheasymptoticsolutionoftheequationinafinitedomain.Basedontheasymptoticsolutionwecandeterminethesizeoftheartificialboundarysuchthattherequiredsolutioninafinitedomaininxandatthefinaltimeisnotaffectedbytheboundary.Also,westudycomputationallythebehaviourinthemaximumnormoftheerrorsinnumericalsolutionsincasessuchthatoneoftheparametersvariesfromfinite(orprettylarge)tosmallvalues,whiletheotherparameterisfixedandtakeseitherfinite(orprettylarge)orsmallvalues.Crank-Nicolsonexplicitandimplicitschemesusingcenteredorupwindapproximationstothederivativearestudied.Wepresentnumericalcomputations,whichdetermineexperimentallytheparameter-uniformratesofconvergence.Wenotethatthisrateisratherweak,dueprobablytomixedsourcesoferrorsuchasinitialandboundarylayersandthediscontinuityinthederivativeofthesolution.
简介:在这份报纸,我们在灯芯的意义在一个部分Black-Scholes模型调查分离时间hedging策略的错误的asymptotic行为--它?-Skorohod集成。hedging错误的集中的率由于分离时间的做贸易当真策略以商人著名时,被调查。结果提供新统计工具学习并且检测效果长记忆并且为分离时间hedging的错误的林中小丘参数。
简介:Thispaperproposesanewapproachforvariableselectioninpartiallylinearerrors-in-variables(EV)modelsforlongitudinaldatabypenalizingappropriateestimatingfunctions.WeapplytheSCADpenaltytosimultaneouslyselectsignificantvariablesandestimateunknownparameters.Therateofconvergenceandtheasymptoticnormalityoftheresultingestimatorsareestablished.Furthermore,withproperchoiceofregularizationparameters,weshowthattheproposedestimatorsperformaswellastheoracleprocedure.Anewalgorithmisproposedforsolvingpenalizedestimatingequation.Theasymptoticresultsareaugmentedbyasimulationstudy.
简介:Let1<ρ≤2,Ebearealρ-uniformlysmoothBanachspaceandT:E→Ebeacontinuousandstronglyaccretiveoperator.ThepurposeofthispaperistoinvestigatetheproblemofapproximatingsolutionstotheequationTx=fbytheIshikawaiterationprocedurewitherrors(?)wherex_0∈E,{u_n},{υ_n}areboundedsequencesinEand{α_n},{b_n},{c_n},{a_n~'},{b_n~'},{c_n~'}arerealsequencesin[0,1].Undertheassumptionofthecondition0<α≤b_n+c_n,An≥0,itisshownthattheiterativesequence{x_n}convergesstronglytotheuniquesolutionoftheequationTx=f.Furthermore,undernoassumptionofthecondition(?)(b_n~'+c_n~')=0,itisalsoshownthat{x_n}convergesstronglytotheuniquesolutionofTx=f.
简介:Thepurposeofthispaperistoinvestigatesomesufficientandnecessaryconditionsforthree-stepIshikawaiterativesequenceswitherrortermsforuniformlyquasi-Lipschitzianmappingstoconvergetofixedpoints.OurresultsextendandimprovetherecentonesannouncedbyLiu[3,4],XuandNoor[5],andmanyothers.
简介:混乱理论教了我们很可能有非线性和随机的输入愿望的一个系统生产不规则的数据。如果随机的错误是不规则的数据,那么随机的错误过程将提起非线性(Kantz和Schreiber(1997))。Tsai(1986)与AR(1)错误在线性模型为自相关和heteroscedasticity介绍了合成测试。刘(2003)与DBL在非线性的模型为关联和heteroscedasticity介绍了合成测试(p,0,1)错误。因此,在回归模型的重要问题是bilinearity,关联和heteroscedasticity的察觉。在这篇文章,作者与DBL讨论非线性的模型的更一般的大小写(p,q,1)由20测试的随机的错误。为bilinearity,关联,和heteroscedasticity的测试的几统计在简单矩阵公式被获得,并且表示。有线性错误的回归模型的结果与双线性的错误被扩大到那些。模拟学习被执行调查测试统计的力量。这篇文章的所有结果扩大并且发展结果Tsai(1986),魏,等(1995),和刘,等(2003)。
简介:Inthispaper,weinvestigatetheproblemofapproximatingsolutionsoftheequationsofLipschitzianψ-stronglyaccretiveoperatorsandfixedpointsofLipschitzianψ-hemicontractiveoperatorsbylshikawatypeiterativesequenceswitherrors.Ourresultsunify,improveandextendtheresultsobtainedpreviouslybyseveralauthorsincludingLiandLiu(ActaMath.Sinica41(4)(1998),845-850),andOsilike(NonlinearAnal.TMA,36(1)(1999),1-9),andalsoanswercompletelytheopenproblemsmentionedbyChidume(J.Math.Anal.Appl.151(2)(1990),453-461).
简介:Semiparametrictransformationmodelsprovideaclassofflexiblemodelsforregressionanalysisoffailuretimedata.Severalauthorshavediscussedthemunderdifferentsituationswhencovariatesaretimeindependent(Chenetal.,2002;Chengetal.,1995;Fineetal.,1998).Inthispaper,weconsiderfittingthesemodelstoright-censoreddatawhencovariatesaretime-dependentlongitudinalvariablesand,furthermore,maysuffermeasurementerrors.Forestimation,weinvestigatethemaximumlikelihoodapproach,andanEMalgorithmisdeveloped.Simulationresultsshowthattheproposedmethodisappropriateforpracticalapplication,andanillustrativeexampleisprovided.
简介:Theauthorsstudytheempiricallikelihoodmethodforpartiallylinearerrors-in-variablesmodelwithcovariatedatamissingatrandom.Empiricallikelihoodratiosfortheregressioncoefficientsandthebaselinefunctionareinvestigated,andthecorrespondingempiricallog-likelihoodratiosareprovedtobeasymptoticallystandardchi-squared,whichcanbeusedtoconstructconfidenceregions.Thefinitesamplebehavioroftheproposedmethodsisevaluatedbyasimulationstudywhichindicatesthattheproposedmethodsarecomparableintermsofcoverageprobabilitiesandaveragelengthofconfidenceintervals.Finally,theEarthquakeMagnitudedatasetisusedtoillustrateourproposedmethod.