简介:考虑水平轴风力发电机组齿轮箱弹性支撑的柔性连接特性,基于集中质量思想和拉格朗日方法,建立风力发电机传动系统多体动力学模型,研究了齿轮箱弹性支撑对传动系统结构动力学特性的影响.利用动力学模型和模态分析方法,得到了由弹性支撑耦合到系统后的模态频率,并获取了在该模态激励下的模态动能分布.采用变参数方法进行传动系统模态对齿轮箱弹性支撑刚度变化的敏感性分析,利用模态叠加法进行齿轮箱体的动响应分析.数值求解结果和分析表明,考虑齿轮箱弹性支撑的传动系统某阶固有频率即为弹性支撑下齿轮箱体振动主模态;弹性支撑线刚度对传动系统低频率固有模态存在一定影响;齿轮箱体振动分析时应考虑1阶和2阶的低频模态较为合理.本研究工作对传动链系统方案可靠性设计和抑制传动链振动的加阻控制提供了一定理论基础.
简介:研究了不确定参数的Lorenz系统和Rossler系统的异结构同步问题.基于Lyapunov稳定性理论,采用主动同步,自适应同步两种方法实现异结构混沌系统的同步,并且利用数值模拟来阐释理论的有效性.
简介:为了协调高速铁道车辆的运动稳定性与曲线通过性能之间的矛盾,本文采用多目标优化方法对一种高速铁道车辆的关键悬挂参数进行了优化处理.采用多体动力学技术建立了某型高速铁道车辆62个自由度的动力学模型,模型考虑了轮轨接触几何非线性、轮轨蠕滑非线性和阻尼非线性等.采用ADAMS—Matlab联合仿真对车辆悬挂系统进行参数化改造,使弹簧刚度和阻尼系数均可调.采用基于遗传算法的多目标优化方法对悬挂参数进行优化,使车辆模型能同时满足3种动力学指标.对比优化前后模型的动力学性能可以发现:模型的运动稳定性和曲线通过性能得到显著提高,虽然运行平稳性有小幅降低,但仍能保持在优良的工作状态.
简介:基于一个特殊的Painleve-Backlund变换和多线性变量分离方法,分析了(2+1)维非线性广义Borer-Kaup(GBK)系统,求得了该系统具有若干任意函数的变量分离严格解.根据得到的变量分离严格解,并通过选择解中的任意函数,引入恰当的局域函数和多值函数,找到了GBK系统一种新的具有实际物理意义的半包局域相干结构,如海洋表面波,并简要地讨论了这种半包局域相干结构的一些特殊的演化性质.结果表明:这种半包局域相干结构相互作用后,完全保持它们原有的速度、波形和波幅,即它们的演化性质是完全弹性的.
简介:分析了风力机叶片大挠度挥舞振动特性.基于Hamilton原理,建立了叶片大挠度挥舞振动控制方程,其中非稳态气动力由Greenberg公式得出.使用瑞利一利兹法求解振动特征问题,得到振动的频率和无阻尼模态函数.基于得出的模态函数,使用Galerkin方法将控制偏微分方程离散,得到模态坐标方程.将振动位移分解为静态位移和动态位移,得到了静态位移和动态位移方程,考查了入流速度比对静态位移和气动阻尼的影响,并对大挠度挥舞振动动态响应进行了分析,得到如下结论:大挠度挥舞振动静态位移沿叶片展向随人流速度比的增大而增大,叶尖处位移最大;当人流速度比较小时,振动为小振幅的周期运动,人流速度比较大时,振动为大振幅的拟周期运动.
简介:用一个分段线性单峰映射描述了二次映射Feigenbaum吸引子的数学结构,证明了存在一个周期2n的正则Fμ-圈嵌套序列,由其生成的吸引的极小Cantor集与单边符号空间的一个所谓"加法器"拓扑共轭.对现有结果作了若干补充和简化证明.