学科分类
/ 25
500 个结果
  • 简介:摘要:多标签图像分类是一项允许单个图像同时属于多个类别的重要机器学习任务。与单标签分类不同,多标签图像分类面临着标签间相关性、数据不平衡以及高维数据处理等挑战。随着工业界的算力提升,许多研究人员利用深度学习的强大学习能力来应对多标签图像分类中遇到的挑战,然而专门针对多标签图像分类的综合研究仍然很少。本文系统地综述了多标签图像分类的近几年的进展,首先介绍了多标签图像分类的背景以及定义,接着讨论了多标签图像分类问题挑战,然后详细回顾多标签图像分类的最新进展,其中包括了其在深度学习方面的现有研究成果,如深度卷积神经网络、Transformer,最后总结了多标签图像分类的现状。希望本文的综述能为多标签图像分类领域的研究人员和实践者提供有价值的参考和指导。

  • 标签:
  • 简介:摘要:近年来无监督图像分类取得了显著进展,尤其是通过对比学习和自监督学习的应用,提升了在缺少标注数据情况下的分类性能。本文综述了无监督图像分类的基本概念、方法和最新进展,重点探讨了对比学习、自编码器、视觉变换器等技术在无监督图像分类中的应用。通过比较主流的无监督方法,如SimCLR、MoCo、MAE、DINO等,本文分析了不同方法的优势和局限,展望了无监督学习在大规模图像分类任务中的应用前景。无监督学习能够有效应对数据标注困难的挑战,具有较强的泛化能力,为图像分类领域提供了有力支持。

  • 标签:
  • 简介:摘要:多标签图像分类是一项允许单个图像同时属于多个类别的重要机器学习任务。与单标签分类不同,多标签图像分类面临着标签间相关性、数据不平衡以及高维数据处理等挑战。随着工业界的算力提升,许多研究人员利用深度学习的强大学习能力来应对多标签图像分类中遇到的挑战,然而专门针对多标签图像分类的综合研究仍然很少。本文系统地综述了多标签图像分类的近几年的进展,首先介绍了多标签图像分类的背景以及定义,接着讨论了多标签图像分类问题挑战,然后详细回顾多标签图像分类的最新进展,其中包括了其在深度学习方面的现有研究成果,如深度卷积神经网络、Transformer,最后总结了多标签图像分类的现状。希望本文的综述能为多标签图像分类领域的研究人员和实践者提供有价值的参考和指导。

  • 标签:
  • 简介:摘要:随着社会的不断发展,深度学习在计算机领域的作用日益显著,比其他传统机器学习技术的优势更加明显,而图像分类问题是研究的焦点内容。传统的图像分类方法存在一定弊端,在处理庞大图像数据的过程中难度较高,致使图像分类精度较差,也无法保障较快的速度,而基于深度学习的图像分类方法有效解决了此问题,成为目前图像分类的佼佼者。本文主要围绕深度学习在图像分类中的应用进行研究,以期为该领域提供一定参考。

  • 标签: 深度学习 图像分类 增强算法
  • 简介:摘要:本文采用DCGAN加强的方法,以garbage classify为例,探讨了DCGAN在城市生活废物中的应用。首先对DCGAN的网络进行了优化,将该网络的初始培训集合导入网络,再将该网络中产生的图象和原有的训练集合进行合并,从而形成一个新的训练集合。本法能够对数据进行高效的扩展,可以将其应用于生活垃圾的数据强化。从而实现了对垃圾的自动分类

  • 标签: 垃圾分类,深度学习,DCGAN,对抗网络
  • 简介:摘要:高光谱图像分类一直是遥感领域的研究热点。由于高精度光谱特征的遥感对象图像富含深层次特征的光谱信息和空间信息,以及待捕捉特征的光谱信息与高精度光谱遥感数据采集对象之间的非线性空间关系,这些传统分类方法无法对特征进行准确分类,如何利用这些光谱信息对深层次特征进行准确分类识别,如何准确提取地物的深层特征并使其更容易分类,是高精度光谱遥感图像特征分类领域下一步技术研究的热点。目前,卷积神经网络模型作为工业深度学习的主要技术模型,已经发展成为工业图像分析处理的重要技术应用。深度机器学习特征方法系统作为一种强大的特征提取器,广泛应用于高精度光谱度的图像特征分类和分析任务。如何针对具体问题搭建网络,也是深度学习的研究内容之一。

  • 标签: 高光谱图像分类 深度学习 特征提取
  • 简介:摘要:Transformer是一种基于自注意力机制(self-attention mechanism)的深度神经网络,这一机制原先用于自然语言处理领域。受Transformer强大的表示能力的启发,研究人员提出将Transformer扩展到细粒度图像分类任务中。与卷积网络和循环网络等其他网络类型相比,基于Transformer的模型在各种视觉领域上能获得更好的性能,因此非常具有竞争力。本文首先将简要介绍Transformer的原理与其各个组成部分;其次,文章从细粒度图像分类的角度介绍相应Transformer的应用;最后本文将介绍Transformer在应用到CV领域时依然存在的不足以及未来可能的研究方向。

  • 标签: 细粒度图像分类 注意力机制 数据增强
  • 简介:摘要:本文针对遥感影像的图像分类与地物识别问题展开研究,提出了一种基于深度学习算法的新型解决方案。首先,采用卷积神经网络(CNN)对遥感影像进行特征提取与学习,提高了图像分类的准确性和效率。其次,引入了多尺度和多模态数据融合技术,进一步提升了地物识别的精度和鲁棒性。实验结果表明,所提出的算法在遥感影像分类与地物识别任务上取得了优异的性能,具有较强的实用性与推广价值。

  • 标签: 遥感影像,图像分类,地物识别,深度学习,数据融合
  • 简介:摘要:本期刊文章研究了图像特征提取与分类识别的方法。文章旨在提供关于图像特征提取和分类识别领域的详细方法,以帮助研究人员更好地理解和应用这些技术。通过各个章节的阐述,详细介绍与该主题相关的不同方法和技术,强调了它们的应用和优点。

  • 标签: 图像特征提取 分类识别 方法 技术
  • 简介:摘要:本论文深入研究了深度学习模型在图像分类中的核心原理和应用。我们首先介绍了神经网络基础、深度神经网络、卷积神经网络(CNN)和循环神经网络(RNN)的原理,为理解深度学习提供了坚实的基础。然后,我们深入讨论了图像分类应用中的数据预处理、模型训练、性能评估和模型部署。这一研究为研究人员提供了关键的知识和技术,以利用深度学习在图像分类领域取得更好的成果。

  • 标签: 深度学习 图像分类 神经网络 卷积神经网络 循环神经网络
  • 简介:摘要:在深度学习技术迅速发展的背景下,各方对图像识别效率及准确率的需求也有所提升。所以,为更好地使用深度学习图像识别算法与分类算法,可运用多层神经网络,对图像信息进行理解及分类,以满足文字识别、人脸识别、物体识别以及车牌识别等场景要求。基于此,本文结合实际思考,首先简要分析了基于深度学习的图像识别与分类算法相关机理,其次阐述了基于深度学习的图像识别与分类算法分析。

  • 标签: 深度学习 图像识别 分类算法
  • 简介:摘要:对细粒度图像检测和分类研究进行介绍,包括可区分的细粒度图像特征检测、基于区域建议框的深度学习特征检测、基于回归的深度学习特征检测以及细粒度图像分类。最后总结存在的问题。

  • 标签:
  • 简介:摘要:图像传感器具有一定抗干扰能力,具有较强的鲁棒性,尤其像偏振传感器、红外传感器等,提高了物体信息提取与提取的成功率。图像传感器对当前生活中图像数据采集提供了很多的便利,其不仅能够对一些目标的表面和几何形状进行检测,还能够对目标的物理性质进行检测,灵敏度高。但在图像传感器数据采集过程中,难免受到多种因素干扰,如:到主点位置与理想位置偏移情况、镜头畸变、大气流动等因素,导致成像结果出现误差。

  • 标签: 深度学习算法 图像传感器 误差校正
  • 简介:摘要文章针对遥感图像的模糊聚类算法进行了研究。数字图像分类技术是数字图像处理技术中非常重要的一个内容。遥感图像固有的模糊性,对于遥感数字图像来说,尤其是中、低分辨率遥感图像,由于混合像元的影响使得分类结果并不是最优的,也就是说,传统的分类方法往往不能取得理想的分类效果。而应用软分类算法原理,采用模糊聚类方法进行遥感图像的非监督分类是解决这种分类模糊性的主要方法之一。文章研究模糊聚类中的模糊C均值聚类算法,并通过计算机程序来实现算法,从而达到对遥感图像非监督分类的目的。此算法与人工判读分类相比,提高遥感图像非监督分类的速度和效率,节省了人力和物力。

  • 标签: 遥感图像分类 模糊聚类 模糊C-均值算法
  • 简介:摘要:参数化密度分布模型作用下的最大似然方法以及 EM算法常被应用到遥感图像分类中,由于受到遥感信息统计分布影响,要在改进 EM算法的基础上科学运用遥感图像分类方法。因此,本文从不同角度入手探讨了遥感图像最大似然分类方法的 EM改进算法,在优势作用发挥基础上进行合理化计算以及分类,提高遥感图像分类效率以及质量。

  • 标签: 浅谈 遥感图像 最大似然分类方法 EM改进算法
  • 简介:摘要:本文提出了一种新的海洋遥感图像频域背景幅度谱聚类分析方法,并基于此对海洋遥感图像中的海洋背景与非海洋背景进行分类识别。首先,对大量海洋遥感背景图像样本进行傅立叶变换,分析了变换结果在频域空间中的分布特性。接着,在频域空间中,根据海洋背景图像样本的频谱特征,建立海水背景的频域描述模型。最后,利用频域背景模型,利用 FCM算法对海洋遥感图像进行聚类分析和识别。

  • 标签:
  • 简介:【摘要】:基于光学遥感的目标检测与分类识别是遥感图像的研究热点之一,主要是研究遥感中是否存在目标及其检测、分割、提取和识别。遥感图像检测是获取大量地块信息的重要途径,目标分割是提高遥感图像质量的重要手段,通过一些方法和应用,能够提高检测目标的能力,让目标检测与识别的结果更加准确。因此,选择识别方法对于正确识别目标非常重要。本文概述了遥感图像目标检测和识别的处理框架,分析了目标检测的方法、图像分割的方法、特征提取和识别,以供未来研究参考。

  • 标签: 光学遥感图像 目标检测 图像分割 特征提取 分类识别