简介:Inthispaper,westudytheglobalasymptotiestabilityofthezerosolutionofageneralizedLienard'ssystem{x^.=φ(y)y^.=-f(x)φ(y)-g(x)byconstructinganewLiapunovfunction.Thesufficientandneoessaryconditionsforglobalasymptoticstabilityundergivenconditionsareobtained.
简介:本文提出了一类Logistic时滞模型的随机离散形式,并对其进行了研究.首先,讨论了相对应的确定性离散模型的稳定解.其次,在一些简单的条件下,证明了随机离散Logistic方程的渐近稳定性.最后,利用数值仿真说明了主要结果.
简介:讨论了一类二阶非线性有理差分方程x(n+1)=xn/(a+x(n-1)^2+β),n∈N的平衡点的全局渐近稳定性。并通过Matlab进行数值模拟后给出两个直观的例子。
简介:对一类三阶非线性系统构造出了较好的Lyapunov函数,得到其零解全局渐近稳定的充分性准则,而且去掉了一般要求Lyapunov函数具有无穷大这个较强的条件,只要求系统正半轨线有界,所得结果包含并改进了旧有的结果.
简介:延迟微分代数方程(DDAEs)广泛出现于科学与工程应用领域.本文将多步Runge-Kutta方法应用于求解线性常系数延迟微分代数方程,讨论了该方法的渐近稳定性.数值试验表明该方法对求解DDAEs是有效的.