简介:""Mensaytheyhatetoshop,""saysZhukin,CityUniversityofNewYorkSociology(社会学)professor.""Yetwhenyouaskthemdeeperquestions,itturnsoutthattheyliketoshop.Mengenerallyliketoshopforbooks,musicandhardware.Butifyouaskthemabouttheshoppingtheydoforbooksormusic,they'llsay,'Well,that'snotshopping.That'sresearch.'""
简介:摘要:随着快速发展,与体育相关的不同信息现在可以通过可穿戴和传感技术记录为有用的大数据形式。大数据技术已成为当前篮球训练中亟待解决的挑战,提高了棒球分析的效果。在本研究中,我们提出了基于内存计算的Spark框架进行大数据处理。首先,我们使用了一种新的群体智能优化布谷鸟搜索算法,因为该算法参数少,全局搜索能力强,支持快速收敛。其次,我们应用传统的K-clustering算法,在Spark分布式环境中使用聚类手段提高最终输出。最后,我们考察了可能导致高压比赛环境的方面来研究职业运动员的防守表现。招聘人员和培训师都可以使用我们的技术来更好地了解基本球员的素质,并最终评估和提高团队的表现。实验结果表明,所建议的方法在聚类性能和实用性方面优于以前的方法。它在移动时对射击训练效果的影响最大,在训练效果上产生了互补的结果。
简介:设图G是一个简单图,图G的补图记为^-G,如果G的谱完全由整数组成,就称G是整谱图.本文确定了图^--αKα∪βKb,b中的所有整谱图.
简介:提出了一种基于改进蚁群算法的动态K-均值聚类算法思想,该算法首先利用蚁群算法的较强处理局部极值的能力,动态地确定了聚类数目和中心,然后利用蚁群聚类得到的结果,再进行K-均值聚类弥补蚁群算法的不足。两者有机结合起来可以寻求到具有全局分布特性的最优聚类,实现了基于改进的蚁群聚类算法分析。