简介:针对具有层次或聚类数据的多水平模型能准确地反映变量间基于层次框架下的关系,并给出不同层次数据的差异性估计及跨级相关估计,为具有层次结构数据的统计建模提供了重要的研究工具,在社会学、心理学、生物医学及经济学领域具有广泛的应用价值。本文简要介绍常用的多水平线性模型和多水平Logistic模型的构建过程,重点介绍其在经济领域中的应用。同时对多水平模型的估计理论、应用软件以及发展展望进行了讨论。
简介:证明对一切θ∈(0,1),所有θ(2√λη-λ-η)都是单重休假的M/M/1排队模型的主算子的几何重数为1的特征值.
简介:上海市社会总抚养比受到诸多因素的影响,导致数据波动性较大,单纯地采用灰色预测模型无法更加准确地进行预测,因此文章提出了基于最小二乘法的改进GM(1,1)模型.首先文章介绍了普通GM(1,1)模型的建立方法与步骤;接着通过采用最小二乘法的原理弱化波动较大的数据,加强其规律性从而建立新的GM(1,1)模型;最后结合2007-2011年上海市社会总抚养比数据建立新的预测模型,并用2012年数据对模型进行验证合格,可以用来预测未来几年上海市社会总抚养比,便于该市对未来经济的发展宏观调控.结果表明该预测方法是合理可行的,为其他相关预测提供了理论依据.
简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象||Tx-Ty||≤||x-y||的Ishikawa型的三重迭代序列的收敛性问题,建立并证明了带误差的Ishikawa三重迭代逼近收敛定理,从而独特的推广了Mann和Ishikawa迭代方法,改进和发展了文献[1]-[7]的主要结果.
简介:讨论自反Banach空间中的原——对偶锥线性优化问题的目标函数水平集的几何性质.在自反Banach空间中,证明了原目标函数水平集的最大模与对偶目标函数水平集的最大内切球半径几乎是成反比例的.