简介:Inthepresentpaper,weproposetheqanalogueofSza′sz-Beta-Stancuoperators.Byestimatethemoments,weestablishdirectresultsintermsofthemodulusofsmoothness.Investigatetherateofpoint-wiseconvergenceandweightedapproximationpropertiesoftheqoperators.Voronovskajatypetheoremisalsoobtained.Ourresultsgeneralizeandsupplementsomeconvergenceresultsoftheq-Sza′sz-Betaoperators,thustheyimprovetheexistingresults.
简介:InthispaperL^p-L^qestimatesforthesolutionu(x,t)tothefollowingperturbedhigh-erorderhyperbolicequationareconsidered,(ρπ--a△)(ρπ--b△)u+V(x)u=O,x∈R^n,n≥6,ρ1eu(x,O)=O,ρ^3eu(x,O)=f(x),(j=O,1,2).WeassumethattheotentialV(x)andtheinitialdataf(x)arecompactlysupported,andV(x)issufficientlysmall,thenthesolutionu(x,t)oftheaboveproblemsatisfiesthesameL^p-L^qestimatesasthatoftheunperturbedproblem.
简介:ThispaperconstructsasetofconfidenceregionsofparametersintermsofstatisticalcurvaturesforAR(q)nonlinearregressionmodels.Thegeometricframeworksareproposedforthemodel.Thenseveralconfidenceregionsforparametersandparametersubsetsintermsofstatisticalcurvaturesaregivenbasedonthelikelihoodratiostatisticsandscorestatistics.Severalpreviousresults,,suchas[1]and[2]areextendedtoAR(q)nonlinearregressionmodels.
简介:TheIncompleteOrthogonalizationMethod(IOM(q)),atruncatedversionoftheFullOrthogonalizationMethod(FOM)proposedbySaad,hasbeenusedforsolvinglargeunsymmetriclinearsystmes.However,theIOM(q)exhibitesirregularconvergencebehaviorwithwildoscillationintheresidualnormsthoughittendstodecreaseinaveryslowmanner,whichisowingtothelackofminimizationpropertyovertheKrylovsubspace.QMRmethodproposedbyFreund,GutknechtandNachtigal,owingtoitsabilitytoavoidbreakdownsandsmoothconvergencebehavior,isarobustiterativesolverforgeneralnonsingularunsymmetriclinearsystems.Inthispaper,weproposeanovelquasi-minimalresidual(QMR)variantoftheIncompleteOrthogonalizationMethod(IOM(q)).Numericalexpermentsshowthatithassmoothconvergencebehaviorandismoreeffective,especiallywhenusingitsrestartedversion.
简介:记Lq为两个变量的量子环面上的斜导子李代数,当0≠q∈C为非单位时,Lq就是q-类似Virasoro-like代数.本文给出了文中构造的Lq的模上的导子及一上同调群H^1(Lq,M).
简介:混乱理论教了我们很可能有非线性和随机的输入愿望的一个系统生产不规则的数据。如果随机的错误是不规则的数据,那么随机的错误过程将提起非线性(Kantz和Schreiber(1997))。Tsai(1986)与AR(1)错误在线性模型为自相关和heteroscedasticity介绍了合成测试。刘(2003)与DBL在非线性的模型为关联和heteroscedasticity介绍了合成测试(p,0,1)错误。因此,在回归模型的重要问题是bilinearity,关联和heteroscedasticity的察觉。在这篇文章,作者与DBL讨论非线性的模型的更一般的大小写(p,q,1)由20测试的随机的错误。为bilinearity,关联,和heteroscedasticity的测试的几统计在简单矩阵公式被获得,并且表示。有线性错误的回归模型的结果与双线性的错误被扩大到那些。模拟学习被执行调查测试统计的力量。这篇文章的所有结果扩大并且发展结果Tsai(1986),魏,等(1995),和刘,等(2003)。
简介:Lp-LqdecayestimateofsolutiontoCauchyproblemofalinearthermoviscoelasticsystemisstudied.Byusingadiagonalizationargumentoffrequencyanalysis,thecoupledsystemwillbedecoupledmicrologically.Thenwiththehelpoftheinformationofcharacteristicrootsforthecoefficientmatrixofthesystem,Lp-LqdecayestimateofparabolictypeofsolutiontotheCauchyproblemisobtained.
简介:1.IntroductionInthispaperweconsiderCauchyproblemforaclassofnonhomogeneousNavier-Stokesequationsintheinfinitecylinderwith.Givensatisfyinginthedistributionsensediv,weseekasolutionvectorandapressurefunctionP(t,x)suchthatwhereisanonlinearvector-valuedfun...