简介:在Goodwin与Puu的宏观经济思想基础上,得到了一个推广的非线性动力学经济周期系统.首先用数值方法研究了此系统在特定参数条件下的全局分岔行为.然后结合最大Lyapunov指数,详细讨论了系统在分岔过程中动力学特征的转变.通过分析分岔图形发现在某些参数区间内倍周期分岔导致了混沌;在混沌区域内嵌有多个周期窗口;"加速数"值的增加可以促进经济的周期性运动.最后介绍了分岔和混沌分析得到的动力学性质对理解经济波动的应用.
简介:建立了两自由度两点碰撞振动系统的动力学模型,给出了碰撞振动系统产生粘滞的条件,分析了系统存在的粘滞运动,采用打靶法,利用变步长逐次迭代逼近的方法求解系统的不稳定的周期碰撞运动,即Poincare截面上的不动点,通过对两自由度两点碰撞振动系统进行数值模拟显示了系统在一定参数条件下存在周期倍化分叉和Hopf分叉,同时通过数值模拟的方法得到了以两自由度两点碰撞振动系统Poincare截面上的不变圈表示的拟周期响应,并进一步分析了随着分岔参数的变化,两自由度两点碰撞振动系统周期运动经拟周期分叉和周期倍化分叉向混沌的演化路径。
简介:对含Karnopp摩擦的柔性滑移铰系统进行动力学建模和仿真.将滑移铰中的滑块视为柔性体,滑道视为刚性接触面,考虑滑道与滑块之间的间隙.由于柔性滑块与滑道的接触状态和摩擦情况比较复杂,采用有限元方法建立了柔性滑块的力学模型,基于罚函数方法建立含Karnopp摩擦柔性滑移铰接触力模型,通过试算迭代法判断柔性滑块各节点的接触状态,基于KED方法和Newmark方法给出了含该滑移铰机械系统动力学方程的数值算法.最后,以含Karnopp摩擦的柔性滑移铰和驱动摆杆构成的机械系统为例进行动力学仿真,分析了其动力学特性,验证了本文给出的方法的有效性.