学科分类
/ 4
76 个结果
  • 简介:为了更快速、高效地确定含润滑铰间间隙对机构动态特性的影响,文中建立了一种新的计算思路.首先,通过理想机构含间隙机构的运动学模型求出间隙力,进一步把间隙力以主动力的形式带入动力学方程,得到机构的相应动态特性.然后,以含间隙润滑的曲柄滑块机构为例,基于二状态接触模型流体润滑模型,对比分析该模型干摩擦模型,来进一步验证该方法的正确性可行性.Simulink仿真数据表明,文中建立的模型能有效地抑制机构的振动,动态特性更接近于理想模型,符合实际情况.

  • 标签: 接触模型 铰间间隙 流体润滑 SIMULINK
  • 简介:研究了弓鳍目鱼“尼罗河魔鬼”的柔性波动长背鳍.针对波动长鳍大的柔性变形特征,提出了由N根刚性鳍条依靠柔性薄膜连接组成的柔性波动长鳍简化模型;在分析长背鳍运动和流固耦合的基础上,建立了柔性波动长鳍的运动学模型;进而,从弹性薄壳理论出发,考虑柔性长鳍结构的几何非线性,并引入无矩薄壳理论的假定,建立柔性长鳍波动的平衡方程.依据所建立的运动学模型和柔性长鳍波动的平衡方程,可以进一步解析柔性长鳍波动运动的动力学性能.

  • 标签: 柔性长鳍 水下航行器 建模 薄壳理论
  • 简介:给出了对转子-轴承系统的分岔混沌等复杂动力学行为进行控制的思想.应用washout-filter状态反馈控制方法进行分岔混沌控制器的设计,用以改进系统转速变化时转轴响应的分岔混沌特性.通过调整控制器的参数来影响转子系统的动力学行为,控制其运行的稳定性.数值模拟结果表明,随着转子-轴承系统转速的不断提高,系统的动力学行为会发生较大变化,此时应用washout-filter状态反馈控制方法进行分岔混沌控制,理论上可起到较好的控制效果.

  • 标签: 转子-轴承系统 分岔 混沌 控制分析 状态反馈控制 非线性转子动力学
  • 简介:通过非线性状态反馈,不改变Hopf分叉点,实现对四维Qi系统极限环的幅值控制.推导出Qi系统在第一类非零平衡点上产生Hopf分叉的条件,绘制第一类平衡点的分叉图.采用washoutfilter非线性控制律,利用中心流形定理对受控系统降维,得到极限环的幅值控制增益之间的近似解析式.通过数值模拟以及幅值解析解数值解的比较,验证幅值预测的正确性控制的有效性.

  • 标签: Qi系统 HOPF分叉 极限环 幅值控制
  • 简介:在GoodwinPuu的宏观经济思想基础上,得到了一个推广的非线性动力学经济周期系统.首先用数值方法研究了此系统在特定参数条件下的全局分岔行为.然后结合最大Lyapunov指数,详细讨论了系统在分岔过程中动力学特征的转变.通过分析分岔图形发现在某些参数区间内倍周期分岔导致了混沌;在混沌区域内嵌有多个周期窗口;"加速数"值的增加可以促进经济的周期性运动.最后介绍了分岔和混沌分析得到的动力学性质对理解经济波动的应用.

  • 标签: 经济周期 分岔 混沌 最大LYAPUNOV指数
  • 简介:气体炮以其优良的性能,在兵器弹道环境模拟领域得到了较好的应用.首先分析了典型弹药的发射环境参数,并找出了其特征值.然后运用气体动力学的相似理论建立了气体炮的内弹道模型,并在计算机上进行了数值模拟.为后续气体炮的结构设计、相关设备的选型、气体炮参数的调整提供了理论依据.

  • 标签: 气体炮 模拟研究 发射环境 建模 内弹道模型 气体动力学
  • 简介:建立了两自由度两点碰撞振动系统的动力学模型,给出了碰撞振动系统产生粘滞的条件,分析了系统存在的粘滞运动,采用打靶法,利用变步长逐次迭代逼近的方法求解系统的不稳定的周期碰撞运动,即Poincare截面上的不动点,通过对两自由度两点碰撞振动系统进行数值模拟显示了系统在一定参数条件下存在周期倍化分叉和Hopf分叉,同时通过数值模拟的方法得到了以两自由度两点碰撞振动系统Poincare截面上的不变圈表示的拟周期响应,并进一步分析了随着分岔参数的变化,两自由度两点碰撞振动系统周期运动经拟周期分叉和周期倍化分叉向混沌的演化路径

  • 标签: 碰撞振动 两点碰撞 周期运动 POINCARE映射 分叉 混沌
  • 简介:研究了悬索在超谐波共振和1:3内共振共同作用下的两模态响应.首先利用Galerkin方法对悬索的面内运动方程进行离散,得到无穷维离散模型.并利用多尺度法推导出悬索同时发生超谐波共振和1:3内共振时的平均方程以及近似响应.最后研究了平均方程的稳态解以及垂跨比对幅频曲线、水平张力以及时间历程的影响.

  • 标签: 悬索 多尺度法 内共振 超谐波共振
  • 简介:发展型偏微分方程混和有限元的求解往往需要变动的维数,不符合传递辛矩阵群固定维数的限制.本文按变分法的进一步发展的思路,推导了运用虚功原理解决不同维数传递辛矩阵群连接的原理.数值例题表明了方法的有效性.

  • 标签: 发展型偏微分方程 混和有限元积分 传递辛矩阵 不同维数的连接
  • 简介:对含Karnopp摩擦的柔性滑移铰系统进行动力学建模和仿真.将滑移铰中的滑块视为柔性体,滑道视为刚性接触面,考虑滑道滑块之间的间隙.由于柔性滑块滑道的接触状态和摩擦情况比较复杂,采用有限元方法建立了柔性滑块的力学模型,基于罚函数方法建立含Karnopp摩擦柔性滑移铰接触力模型,通过试算迭代法判断柔性滑块各节点的接触状态,基于KED方法和Newmark方法给出了含该滑移铰机械系统动力学方程的数值算法.最后,以含Karnopp摩擦的柔性滑移铰和驱动摆杆构成的机械系统为例进行动力学仿真,分析了其动力学特性,验证了本文给出的方法的有效性.

  • 标签: 柔性滑移铰 Karnopp摩擦 间隙 有限元
  • 简介:针对分散控制无法实现子系统之间的信息交换,将分布式控制应用于网络化系统,以期实现子系统之间的信息交换和提高网络的性能.利用Lyapunov函数法,分别给出了在传统分散控制和网络分布式控制下的整个网络化系统稳定性的判据;给出了可容许的最大时滞的优化算法.将所得到的理论结果,结合到一个简单的网络化系统,进行数值仿真.结果表明,传统分散控制相比较,网络分布式控制更能提高整个网络化系统稳定性的收敛速度.

  • 标签: 网络化系统 分布式控制 分散控制 稳定性 优化 时滞
  • 简介:在受迫VanderPol振动系统的近似解的基础上,获得驱动系统的虚拟轨线.将虚拟轨线代入驱动一响应振动系统的近似误差方程,再用多尺度法求得同步时间关于反馈增益的分析表达式,并且将数值分析结果进行比较表明:用该方法求得的同步时间反馈增益的关系和数值模拟结果相当一致.这方法也适用于研究自激VanderPol振动系统.

  • 标签: 受迫Van der Pol振子 虚拟轨线 多尺度法 同步时间
  • 简介:建立了直齿行星齿轮的动力学模型.其中,齿齿之间的啮合非线性由弹簧-阻尼器-间隙-啮合误差环节模拟.提出了一种以行星轮转角为变量的时变啮合刚度时变啮合误差表达形式,解决了变转速下行星齿轮动力学模型的描述和求解问题.通过对动力学模型进行求解,分别研究了转速、齿侧间隙、啮合误差和负载等重要参数对行星齿轮动力学特性的影响.

  • 标签: 行星齿轮 动力学 啮合刚度 建模
  • 简介:为了设计结构复杂、性能优越的多涡卷混沌系统,采用理论分析和数值仿真的方法,通过设计一个连续非线性函数,建立了三阶Chua系统的单方向网格多涡卷吸引子模型.在Matlab平台上,通过吸引子相图、最大Lyapunov指数、分岔图和Poincaré截面等方法,分析了多涡卷Chua混沌系统的动力学特性.研究结果表明,多涡卷Chua混沌吸引子具有丰富的动力学特性,仿真结果与理论分析一致,表明了多涡卷Chua混沌系统设计方法的有效性和设计模型的正确性.

  • 标签: 混沌 多涡卷吸引子 CHUA电路 性能分析
  • 简介:在状态空间下,将线性陀螺系统微振动问题导向哈密顿体系,可以得到一组加权共轭辛正交关系和模态展开定理.利用这种特点构造了陀螺系统模态摄动计算式灵敏度计算式,从而解决了拉格朗日体系下陀螺系统模态摄动分析灵敏度计算的困难,算例显示了文中计算方法的有效性.

  • 标签: 陀螺系统 模态摄动分析 灵敏度计算 惯性动力系统 哈密尔顿体系 微振动