简介:摘要:本研究旨在构建一个高效准确的信用评分模型,以解决金融机构在信贷决策过程中对借款人信用评估的难题。在当前的大数据环境下,借款人的各类信息可以从多个维度进行收集,包括但不限于个人基本信息、征信信息、财务状况、行为特征等。为了充分利用这些信息,本研究采用了一种基于优化粒子群算法的子模型组合方式来构建信用评分模型。首先,我们将收集到的信息分为几个不同的类别,并为每一类信息建立一个逻辑回归子模型,以此来计算各个维度的信用评分。逻辑回归模型因其解释性强、计算效率高而被广泛应用于信用风险评估中。然后,为了得到一个综合的信用评分,我们需要确定这些子模型评分在最终评分中的权重。这里,我们引入了模拟退火粒子群优化算法(Simulated Annealing-Particle Swarm Optimization, SAPSO)来寻找最佳的权重组合,并将此算法与线性回归计算组合权重、基于遗传算法的优化组合权重进行比较。我们在实际数据集上进行了实验验证,通过模拟退火粒子群算法的优化,我们能够找到一组权重,使得组合后的信用评分模型在预测准确性上达到最优。证明了该方法相较于传统单一模型建模方式不仅提高了信用评分的准确性,而且通过子模型的建立,增强了模型对借款人信用状况的解释能力。此外,模型的构建过程考虑了不同信息类型的重要性,使得评分结果更加客观和全面。本研究为信用风险评估领域的研究提供了一种新的模型构建思路,对于金融机构的风险管理和信贷决策具有重要的实践意义和实际应用价值。
简介:摘要:本文主要针对真菌群落问题进行了相关研究,利用多元线性回归模型、logistics模型寻找真菌之间关系演化的影响。首先使用多个线性回归模型建立分解速率模型,并使用matlab进行绘制和分析。其次考虑到真菌之间的相互作用对分解速率的影响,使用逻辑模型预测了特定环境下不同种类真菌的生长。最后结合模型并分析五种特定环境条件下干旱,半干旱,温带,乔木和热带雨林不同环境下不同种类真菌的生长状况。
简介:摘要:手机产业一直被视为是国民经济的产业,在经济发展的过程中也起到了非常重要的作用。近年来,我国的手机行业伴随市场高速发展的步伐而快速增长,行业规模不断扩张,因此针对我国的电子产品(手机)这一行业都一直存在着其销售量无法与生产量相匹配的问题,产量过剩会导致产品积压;产量不足会影响收入,故对手机的销量预测是非常重要的。“手机销量预测”数学模型是先来计算总销量或总订单量的模型,进而在来预测各周的手机销售量和订单量。
简介:摘 要:随着化石燃料的长期消耗走向枯竭,近年来展开了许多利用废弃食品如废弃蛋糕等生产乙醇的研究,本文基于化学含氧量(COD)、还原糖(RS)及α-淀粉酶浓度对酒精生成的影响,对乙醇生产量优化问题进行了研究。