简介:考察一类带幂次非线性项的Schrodinger方程的Dirichlet初边值问题,提出了一个有效的计算格式,其中时间方向上应用了一种守恒的二阶差分隐格式,空间方向上采用Legendre谱元法.对于时间半离散格式,证职了该格式具有能量守恒性质,并给出了L^2误差估计,对于全离散格式,应用不动点原理证明了数值解的存在唯一性,并给出了L^2误差估计.最后,通过数值试验验证了结果的可信性.
简介:有界线性空间中引入了Q-距离的概念,建立了一类向量值Ekeland变分原理,其目标函数是从有界线性空间映到锥序的实线性空间,并且扰动项中含有Q-距离.由此可以得到有界线性空间中现有的一些Ekeland变分原理.同时建立了有界线性空间中的向量值Caristi不动点定理,也给出二者的等价性.