简介:设(x*,y*)是以A=[aij]m×n为赢得矩阵G的对策解,则当局中人1,2各自独立地使用其最优策略x*=(x*1,x*2,…,xmn),y*=(y*1,y*2,…,y*n)时,局中人1的赢得期望为对策值v*=x*Ay*T.若局中人双方使用使得方差D(x*,y*)=∑∑(aij-v*)2x*iy*j达最小的对策解(x*,y*),则其赢得靠近v*的概率达到最大.以O记使方差达到最小的对策解的集合.若O满足(x(1),y(1)),(x(2),y(2))∈O蕴涵(x(1),y(2)),(x(2),y(1))∈O,则说O是可换的.本文首先证明了:若矩阵对策G有纯解,则O是可换的.然后证明了如果限定局中人1在其混合扩充策略集的一个非空紧凸子集X中选取策略,那么存在X的一个非空紧子集O(X),它是有限个非空互不相交紧凸集之并,使得只要局中人1使用O(X)中的策略,那么在最坏的情况下可以取得最好的赢得.
简介:本文研究两类稳定性定理.对LaSalle不变原理做更加合理的改进.研究了Lyapunov直接法,得到了改进的比较原理,并加以证明,最后应用到实例中.
简介:本文分析了计算机集成制造系统中生产系统的能力最优配置与管理控制策略之间的关系。针对生产加工系统与加工组装系统的不同特点,本文深入探讨了在Push(推)策略或以Push为主导的推/拉混合控制策略下,生产系统各工作站能力最优配置与能力平衡之间的关系。
简介:由于设备会随着使用时间的增加和自身寿命增长引起的退化而逐渐磨损失效进而发生故障.因此对于生产企业来说,想要提高自身竞争力,就要在生产过程中合理地安排预防性维护以减少设备故障导致的计划外停机,防止生产计划和生产线的中断,从而才能获取更多收益.本文从生产企业的角度出发,提出单机生产系统的非等周期不完美预防性维护与生产的联合优化策略,综合考虑生产价值、生产成本、生产延迟成本及各类维护成本等,构建了总利润率模型,目标是使总利润率最大化.其中涉及到的三类维护方式为(1)完美维护——即更换;(2)小修维护——即使设备“恢复如旧”;(3)不完美预防性维护——即使设备状态恢复到介于“完全如新”与“恢复如旧”之间的某状态.最后本论文通过数字实例,验证了新策略模型在实际生产应用中的有效性.