简介:TN1595010522光电器件近年来的发展趋向=Reviewofrecentdevelopmentinoptoelectronicdevices[刊,中]/缪家鼎(浙江大学.浙江,杭州(310027))//半导体光电.—1994,15(1).—1—6文章从光电器件的单元技术、成像器件和垂直腔面发射半导体激光器三方面评述了光电器件的进展,说明它是一个充满活力的研究领域。图12表1参2(任延同)TN1595010523光学器件与光计算机=Opticaldeviceandopticalcomputer[刊,中]/张桂萍(河北大学电子系,
简介:一、填空题1.某数的12比它的3倍小4,则这个数为.2.当x=时,代数式x-1与2x-14相等.3.单项式3a2+xb4与-12a5b2(y-3)是同类项,则x=,y=.4.在公式S=12(a+b)h中,S=120,h=15且b=2a,则a=.5.填出解方程0.1-0.2x0.3=1-0.01x-0.020.06各步的依据:解 1-2x3=1-x-26( )2(1-2x)=6-(x-2)( )2-4x=6-x+2( )-4x+x=6+2-2( )-3x=6( )x=-2( )6.三个连续奇数的和为105,则三个数为.7.某人从甲地到乙地,原计划用6小时,因任务紧急,每小时比原速多行
简介:一、一元选择题(每小题3分,共30分)1.(m2-m-2)x2+mx+2=0是关于x的一元二次方程,则m的取值范围是( )(A)m≠-1 (B)m≠2(C)m≠-1且m≠2 (D)m≠02.关于x的方程(m-2)x2+(1-2m)x+m2-4=0有一个根是零,则m的值应是( )(A)12 (B)-2 (C)2 (D)±23.方程x(x+2)=2(x+2)的解是( )(A)x=2 (B)x=2或x=-2(C)x=-2 (D)无解4.方程2(m-1)x+1=(|m|-1)x2,只有一个实根x,则m=( )(A)-1 (B)0 (C)1 (D)125.已知a、b、c为任意实数,则方程x2-(a+b)
简介:运用Hadmard反函数定理讨论了一类满足渐近非一致性条件的常微分方程组解的存在唯一性,推广了已有结果.