简介:运用Leray-Schauder原理讨论一阶常微分方程多点初值问题{x'(t)=f(t,x(t)),a.e.t∈{0,T]x(0)+k=1∑^makx(tk)=c0的可解性,其中f是一个Caratheodory函数
简介:本文运用Krasnoselskii和Schauder不动点定理,得到了一类分数阶微分方程多点边值问题解的存在性.
简介:讨论了一类非线性分数阶微分方程三点边值问题解的存在性.微分算子是Riemann.Liouville导算子并且非线性项依赖于低阶分数阶导数.通过将所考虑的问题转化为等价的Fredholm型积分方程,利用Schauder不动点定理获得该三点边值问题至少存在一个解.
简介:研究了含p-Laplacian算子的奇异四阶四点边值问题,利用上下解方法与Schauder不动点定理,获得了至少一个C~3[0,1]正解的存在性结果.