简介:本文主要研究一类无穷区间上分数阶边值问题的正解.通过构造特殊的Banach空间,运用Leray-Schauder非线性抉择得到了该边值问题至少存在一个正解以及运用Leggett-Williams不动点定理得到至少存在三个正解.
简介:求出用Jackson算子Jn(f.,x)逼近函数f(x)(∈C2x)时关于二阶连续模ω2(f;1/n)的最佳逼近常数:^εupsupn∈Nf∈C2^xf≠cost‖Jn(f,x)-f(x)‖c/ω2(f,1/n)=8-17/π及用阶数不超过n的三角多项式Hn^T对连续函数f(z)的最佳逼近Bn(f)c的上界估计:Bn(f)c≤(24.5-203/4π)ω2(f,1/n)。
简介:基于锥上不动点定理,研究了变时滞二阶奇异边值问题,用算子逼近的方法处理奇异性,在较弱的条件下,得到了正解的存在性和特征区间.
简介:利用锥上的不动点定理,在非线性项f,g半正并允许下方可以无界的情形下研究了一类非线性二阶边值问题u”+λf(t,u)+μg(t,u)=0,αu(0)-βu'(0)=0,γu(1)+δu’(1)=0,在非线性项f与g满足更广的同为超(次)线性和一个为超线性一个为次线性的情形下得到了边值问题的正解,推广,改进和统一了一些已知的结果.
简介:利用变量代换把二阶变系数线性微分方程降阶为一阶线性微分方程,讨论了二阶变系数线性微分方程可积4个充分条件及通解公式.
简介:利用Fouier级数理论和不动点原理研究下列方程:d^n/dt^n(x(t)-cs(t-τ))=n/∑/j=1ajx^(n-j)(t)+n/∑/j=1bjx(n-j)t-τ)+f(t,xt,x′t,…,x^(n-1)t)的周期解问题,得到了解的存在性和唯一性。
简介:在一对上-下解和下-上解存在的条件下,研究了一类二阶耦合积分边值问题{-x″=f1(t,x,y,x′),-y″=f2(t,x,y,y′),t∈[0,1],x(0)=y(0)=0,x(1)+∫01y(t)dA(t)=0,y(1)+∫01x(t)dB(t)=0解的存在性,其中f1,f2∈C([0,1]×R3,R).
简介:考虑下列具多偏差变元的四阶p-Laplace方程:[φp(u″(t))]″+f(u(t))u′(t)+g(t,u(t-τ1(t)),u(t-τ2(t)),…,u(t-τn(t)))=e(t).利用重合度定理得出其周期解的存在性结论.
简介:本文研究非线性分数阶三点边值问题{cD0a+u(t)+f(t,u(t))=0,0
简介:主要研究了一种隐式重新启动的Lanczos算法在模型降阶中的应用。分析了由这个算法得到的降价后的模型的一些性质,对于一个n阶稳定的线性时不变系统,模型降阶的思想是寻找一个m阶转换函数来近似原系统的n阶转换函数H(s),其中,n〉〉m,传统的krylov子空间方法仅仅产生一个不稳定的实现,并且在低频处的误差较大,本文所考虑的隐式重新启动的Lanczos方法,能较好的解决上述两个问题。
简介:采用交替方向思想数值模拟时间分数阶二维扩散方程初边值问题,构造出计算简单且稳定性好的交替方向隐式离散格式。借助傅里叶分析技术,证明了离散格式的无条件稳定性,并证明了格式关于时间与空间具有最优收敛精度。数值实验支持了文中理论结果。
简介:研究时滞差分方程解的性质在理论和应用中是非常重要的.本文借助研究离散变量的差分方程振动性的一般方法,研究了一类具有连续变量的变系数偶数阶中立型差分方程的有界解的振动性,给出了有界解振动的几个充分条件.
简介:考虑时标上奇异三阶微分方程特征值问题.首先使用Krein-Rutmann定理得到正线性算子的第一特征值,再联合不动点指数定理证明了特征值问题正解的存在性,同时也给出了参数λ的取值区间.
简介:通过构造拟上下解的单调迭代过程,在拟解对之间利用Sadvoskii不动点定理获得了Banach空间非线性三阶三点边值问题解的存在性.
简介:<正>§1引言考虑二阶非线性具变系数的中立型时滞微分方程[x(t)-P(t)x(t-τ)]″=Q(t)f[x(t-r)],t≥t0(1)其中τ>0,r>0为常数,P,Q∈C(t0,∞),R+),
简介:令R为有单位元1的2-挠自由的交换环.本文给出R上四阶反对称矩阵的李代数L4(R)的任意BZ导子的分解,及BZ导子成为内导子的一个充要条件.
简介:本文研究二阶中立型时滞差分方程△^2(xn-cnxn-m)=pnxn-k,n≥no(*)的振动性与非振动性.其中,Cn,pn均为实效,pn≥0,pn≠0,n≥n0,m,k,n0是给定的非负整数,且m≥1,△为向前差分算子,△xn=xn+1-xn,我们证明了t若Cn≥0,则方程(*)总存在一个无界正解,也给出(*)的一切有界解振动的若干充分条件及充分必要条件.
简介:运用Leray-Schauder原理讨论一阶常微分方程多点初值问题{x'(t)=f(t,x(t)),a.e.t∈{0,T]x(0)+k=1∑^makx(tk)=c0的可解性,其中f是一个Caratheodory函数
简介:运用变分方法和临界点理论研究2n阶差分方程边值问题非平凡解的存在性,推广和完善了近期的一些结果.
简介:本文运用Krasnoselskii和Schauder不动点定理,得到了一类分数阶微分方程多点边值问题解的存在性.
一类无穷区间上分数阶边值问题正解的存在性
Jackson算子关于二阶连续模的最佳逼近常数
变时滞二阶奇异边值问题的正解和特征区间
一类二阶半正边值问题正解的存在性
二阶变系数线性微分方程的几个可积类型
一类n阶中立型泛函数微分方程的周期解
一类二阶耦合积分边值问题的可解性
具多偏差变元四阶Laplace方程的周期解存在性
Caputo分数阶微分方程三点边值问题解的存在性
隐式重新启动的Lanczos算法在模型降阶中的应用
求解时间分数阶二维扩散方程的交替方向隐式法
具连续变量的变系数偶数阶差分方程的有界振动
奇异三阶微分方程特征值问题正解的存在性
非线性三阶三点边值问题的拟上下解方法
二阶非线性中立型微分方程解的振动准则
交换环上四阶反对称矩阵李代数的BZ导子
具有变系数的二阶中立型时滞差分方程
一阶常微分方程多点初值问题的可解性
2n阶差分方程边值问题非平凡解的存在性
一类分数阶微分方程多点边值问题解的存在性