学科分类
/ 8
154 个结果
  • 简介:本文主要研究一类无穷区间上分数边值问题的正解.通过构造特殊的Banach空间,运用Leray-Schauder非线性抉择得到了该边值问题至少存在一个正解以及运用Leggett-Williams不动点定理得到至少存在三个正解.

  • 标签: 分数阶微分方程 无穷区间 边值问题 不动点定理 正解
  • 简介:求出用Jackson算子Jn(f.,x)逼近函数f(x)(∈C2x)时关于二连续模ω2(f;1/n)的最佳逼近常数:^εupsupn∈Nf∈C2^xf≠cost‖Jn(f,x)-f(x)‖c/ω2(f,1/n)=8-17/π及用数不超过n的三角多项式Hn^T对连续函数f(z)的最佳逼近Bn(f)c的上界估计:Bn(f)c≤(24.5-203/4π)ω2(f,1/n)。

  • 标签: 最佳逼近 二阶 算子 连续模 常数 上界估计
  • 简介:基于锥上不动点定理,研究了变时滞二奇异边值问题,用算子逼近的方法处理奇异性,在较弱的条件下,得到了正解的存在性和特征区间.

  • 标签: 变时滞 边值问题 正解 特征区间
  • 简介:利用锥上的不动点定理,在非线性项f,g半正并允许下方可以无界的情形下研究了一类非线性二边值问题u”+λf(t,u)+μg(t,u)=0,αu(0)-βu'(0)=0,γu(1)+δu’(1)=0,在非线性项f与g满足更广的同为超(次)线性和一个为超线性一个为次线性的情形下得到了边值问题的正解,推广,改进和统一了一些已知的结果.

  • 标签: 二阶边值问题 半正 正解
  • 简介:利用变量代换把二变系数线性微分方程降为一线性微分方程,讨论了二变系数线性微分方程可积4个充分条件及通解公式.

  • 标签: 微分方程 变系数 通解
  • 简介:在一对上-下解和下-上解存在的条件下,研究了一类二耦合积分边值问题{-x″=f1(t,x,y,x′),-y″=f2(t,x,y,y′),t∈[0,1],x(0)=y(0)=0,x(1)+∫01y(t)dA(t)=0,y(1)+∫01x(t)dB(t)=0解的存在性,其中f1,f2∈C([0,1]×R3,R).

  • 标签: 耦合积分边值问题 上-下解 下-上解 NAGUMO条件
  • 简介:考虑下列具多偏差变元的四p-Laplace方程:[φp(u″(t))]″+f(u(t))u′(t)+g(t,u(t-τ1(t)),u(t-τ2(t)),…,u(t-τn(t)))=e(t).利用重合度定理得出其周期解的存在性结论.

  • 标签: 周期解 重合度 偏差变元 LAPLACE方程
  • 简介:主要研究了一种隐式重新启动的Lanczos算法在模型降中的应用。分析了由这个算法得到的降价后的模型的一些性质,对于一个n稳定的线性时不变系统,模型降的思想是寻找一个m转换函数来近似原系统的n转换函数H(s),其中,n〉〉m,传统的krylov子空间方法仅仅产生一个不稳定的实现,并且在低频处的误差较大,本文所考虑的隐式重新启动的Lanczos方法,能较好的解决上述两个问题。

  • 标签: KRYLOV子空间 LANCZOS算法 大型动力系统 隐式重新启动
  • 简介:采用交替方向思想数值模拟时间分数二维扩散方程初边值问题,构造出计算简单且稳定性好的交替方向隐式离散格式。借助傅里叶分析技术,证明了离散格式的无条件稳定性,并证明了格式关于时间与空间具有最优收敛精度。数值实验支持了文中理论结果。

  • 标签: 分数阶扩散方程 交替方向隐式法 无条件稳定 最优收敛精度
  • 简介:研究时滞差分方程解的性质在理论和应用中是非常重要的.本文借助研究离散变量的差分方程振动性的一般方法,研究了一类具有连续变量的变系数偶数中立型差分方程的有界解的振动性,给出了有界解振动的几个充分条件.

  • 标签: 差分方程 有界解 振动 最终正解
  • 简介:考虑时标上奇异三微分方程特征值问题.首先使用Krein-Rutmann定理得到正线性算子的第一特征值,再联合不动点指数定理证明了特征值问题正解的存在性,同时也给出了参数λ的取值区间.

  • 标签: 微分方程 特征值 奇性 时标 正解
  • 简介:令R为有单位元1的2-挠自由的交换环.本文给出R上四反对称矩阵的李代数L4(R)的任意BZ导子的分解,及BZ导子成为内导子的一个充要条件.

  • 标签: 反对称矩阵 李代数 导子 内导子 BZ导子
  • 简介:本文研究二中立型时滞差分方程△^2(xn-cnxn-m)=pnxn-k,n≥no(*)的振动性与非振动性.其中,Cn,pn均为实效,pn≥0,pn≠0,n≥n0,m,k,n0是给定的非负整数,且m≥1,△为向前差分算子,△xn=xn+1-xn,我们证明了t若Cn≥0,则方程(*)总存在一个无界正解,也给出(*)的一切有界解振动的若干充分条件及充分必要条件.

  • 标签: 中立型时滞差分方程 二阶 变系数 有界解 差分算子 非振动性
  • 简介:运用Leray-Schauder原理讨论一常微分方程多点初值问题{x'(t)=f(t,x(t)),a.e.t∈{0,T]x(0)+k=1∑^makx(tk)=c0的可解性,其中f是一个Caratheodory函数

  • 标签: 存在性 LERAY-SCHAUDER原理 多点初值问题