简介:设R是素环,I是R的非零理想,如果R容许一个非单位映射的左乘子使得对所有x,y∈I满足δ(x°y)=x°y或δ(x°y)+x°y=0,那么R可交换.此外,如果R是2-扭自由的素环,U是平方封闭的李理想,γ是伴随导子非零的广义导子,B:R×R→R是迹函数为g(x)=B(x,x)的对称双导,当下列条件之一成立时U为中心李理想(1)γ同态作用于U(2)2[x,y]-g(xy)+g(yx)∈Z(R)(3)2[x,y]+g(xy)-g(yx)∈Z(R)(4)2(x°y)=g(x)-g(y)(5)2(x°y)=g(y)-g(x)对所有的x,y∈U.更多还原
简介:一、一元选择题:(每小题3分,共45分)1.I一2l的倒数是【).(J)一2(B)2(。):.fD)一i12.下列【矧彤r”,既址中心对称图形,又是轴埘称图形的是()【.1)等边:厢形(B)平i了四边形(c)矩形(D)等腰梯形3.下列各式中,ff{等天系成立的足().({)_”+工…=T“’~(曰)x”。·上…:Y”’一”(C).r’·J、=2Y’(D)x。÷x:=x’4如米蛮数h、满足I』一ll+(r+、)!=0.耶幺rt的他等t()【I)2(『j)I(fj)!I(D)一I5.如粜,/I~锐『fJ.¨SIIL~=’:,琊/二().(I)(