简介:一、填空(1~5小题各3分,6~8小题各4分,9、10小题各5分,共37分)1.按角分类,三角形可分为、和.2.△ABC的边AB=6cm,AC=4cm,则第三边BC的范围是<BC<.图A-13.如图A-1,CD是△ABC的角平分线,AB=AC.若∠A=50°,则∠1=.4.在△ABC中,∠C=90°,AB=13cm,AC=5cm,则BC=cm.图A-25.如图A-2,已知线段AB,用尺规作AB的垂直平分线.(保留作图痕迹)6.等腰三角形的一个顶角比底角小30°,则它与顶角相邻的外角等于.7.如图A-3,在△ABC中,∠C=90°,AC=15cm,AB=25cm,点D是BC中点,则AD=cm.图
简介:相似三角形是初中数学中空间与图形领域的一块重要内容,相似三角形的知识体系是在全等三角形知识体系的基础上的拓广和发展,相似三角形与全等三角形是承上启下的关系,其中包含了重要的数学思想:从特殊到一般.学好相似三角形的知识,为今后进一步学习三角函数及与相似有关的比例线段等知识打下良好的基础,相似三角形内容主要包括比例线段,相似三角形,相似三角形的条件、性质及其应用,相似多边形,图形的位似等.这些内容是以比例线段为基础,以相似三角形为中心展开并进行学习和讨论的.主要内容重视对知识的探究和运用,重视与实际问题的联系及运用相似知识解决实际问题能力的培养.海南省中考试题涉及到相似的分值大概在3—15分.
简介:环R称为左Quasi—morphic环,是指对任意a∈R都存在6,c∈R使得Ra=f(6)并且l(a)=Rc。文章主要证明了:BMA的形式三角矩阵环T={(mb,a0)a∈A:b∈B,m∈A}是Quasi—morphic当且仅当A.B是Quasi—morphic并且M=0。这个结果引导我们研究了Quasi—morphic环的comer环的Quasi—morphic性。
简介:设An+1是n+1维仿射空间,D表示An+1上的平坦联络,M是n维光滑流形,x:M→An+1是一个非退化的仿射浸入.对于M上的横截向量场ξ,存在唯一的选择(称为仿射法向量场),使得上述浸入是一个Blaschke浸入(见[2]).设▽是此浸入由D在M上诱导的仿射联络,我们有:DXY=▽XY+h(X,Y)ξ这里X,Y,Z是M上的切向量场,h是对称的双线性形式,由它可以定义M上的伪黎曼度量G,称为Blaschke度量,S称为M的形态算子.若S=λid,则称M为仿射球,当S=0称M为虚仿射球.设▽为由Blaschke度量G在M上诱导的Levi-Civita联络,定义:C(X,Y,Z)=(▽Xh)(Y,Z)称C为M的三次形式,K为差异张量,J为Pick不变量,L1为仿射平均曲率.