学科分类
/ 11
211 个结果
  • 简介:枚举法与树在概率中的应用刘长乃(北京经济学院)古典概率的计算是概率论中最基本、最重要的内容之一,学好古典概率的计算对后续课程的学习是非常重要的。然而对于初学概率的学生来说这是较难掌握也是容易出错的地方,特别是对有利事件数的计算,不是遗漏就是重复计算...

  • 标签: 枚举法 概率计算 条件概率 古典概率 树图 基本事件数
  • 简介:设H是阶为n的连通.在H的某一个顶点上悬挂一棵阶为j的树,得到H_j,用H_j表示这样的图形族.本文证明:当j充分大时,有r(G,H_j)=(x(G)-1)(n+j-1)+s(G),其中x(G),s(G)分别表示G的色数和色数剩余.

  • 标签: RAMSEY数 连通图 悬挂树 色数
  • 简介:本文编制了Fourier级数解题流程,由此进行题型设计与计算。

  • 标签: FOURIER级数 流程图
  • 简介:一、启发提问1.正比例函数与一次函数有什么区别与联系,它们自变量的取值范围是什么.2.正比例函数与一次函数的象各是什么,确定它们的解析式各需要求得什么.二、读书指导1.若函数y=其中k是常数,b是,那么y叫做x的一次函数,当b=时,函数表达式变为y=,这时y是x的正比例函数.因此正比例函数是一次函数的特殊形式.2.一次函数y=kx+b(k≠0)中自变量x的指数是,x的系数k必须不为0,又叫做比例系数,确定一次函数的解析式,就是要确定待定系数k、b的值.3.一次函数y=kx+b(k≠0)的象是经过(0,b)点且与正比例函数y=kx(k≠0)的象平行的一条直线.而正比例函数y=kx(k≠0)

  • 标签: 正比例函数 一次函数 函数的图象 函数解析式 函数关系式 待定系数法
  • 简介:设G是一个具有顶点集V(G)和边集E(G)的。设g和f是定义在V(G)上的两个整数值函数,使得g(x)≤f(x)对所有的点x∈V(G)都成立。结果G是一个(mg+n,mf-n)-,1≤n

  • 标签: 因子分解 正交 整数值函数
  • 简介:设Sn是那个对称群.让〈n〉={1,2,…,n},B*表示Sn中所有对换的集合和BB*.关于B的对换图Wn被定义为V(Wn)=〈n〉,E(Wn)={[uv]:(uv)∈B}.如果Wn是一棵树,则这个对换图称为一棵对换树Tn.Tn是Sn的一个极小生成集.在这篇文章里,我们研究了CayleyCay(Sn,Tn)的性质.证明了Cay(Sn,Tn)是(n-2)-可扩的,即,Cay(Sn,Tn)的可扩性达到最大.

  • 标签: CAYLEY图 对称群 n-可扩
  • 简介:利用交替方向隐格式研究了一类三维系数椭圆方程的边值问题,给出了交替方向法的推导过程,建立了相应的误差分析,并进行了数值模拟,结果表明,该格式具有易于计算、求解精确度高等优点.

  • 标签: 椭圆型方程 交替方向法 边值问题 误差分析
  • 简介:考虑下列具多偏差元的四阶p-Laplace方程:[φp(u″(t))]″+f(u(t))u′(t)+g(t,u(t-τ1(t)),u(t-τ2(t)),…,u(t-τn(t)))=e(t).利用重合度定理得出其周期解的存在性结论.

  • 标签: 周期解 重合度 偏差变元 LAPLACE方程
  • 简介:研究时滞差分方程解的性质在理论和应用中是非常重要的.本文借助研究离散变量的差分方程振动性的一般方法,研究了一类具有连续变量的系数偶数阶中立型差分方程的有界解的振动性,给出了有界解振动的几个充分条件.

  • 标签: 差分方程 有界解 振动 最终正解
  • 简介:本文研究二阶中立型时滞差分方程△^2(xn-cnxn-m)=pnxn-k,n≥no(*)的振动性与非振动性.其中,Cn,pn均为实效,pn≥0,pn≠0,n≥n0,m,k,n0是给定的非负整数,且m≥1,△为向前差分算子,△xn=xn+1-xn,我们证明了t若Cn≥0,则方程(*)总存在一个无界正解,也给出(*)的一切有界解振动的若干充分条件及充分必要条件.

  • 标签: 中立型时滞差分方程 二阶 变系数 有界解 差分算子 非振动性
  • 简介:在Banach空间中讨论一类新的广义非线性混合型拟分包含问题.用预解算子的概念,建立了一种解此类问题的算法.所得结果改进、推广和统一了文献中的一些结果.

  • 标签: 变分包含 预解算子 m-增生映射 迭代方法
  • 简介:有界线性空间中引入了Q-距离的概念,建立了一类向量值Ekeland分原理,其目标函数是从有界线性空间映到锥序的实线性空间,并且扰动项中含有Q-距离.由此可以得到有界线性空间中现有的一些Ekeland分原理.同时建立了有界线性空间中的向量值Caristi不动点定理,也给出二者的等价性.

  • 标签: 有界线性空间 EKELAND变分原理 CARISTI不动点定理 Q-距离
  • 简介:一个r-klee-递归定义为一个r+1阶完全或者通过用一个r阶完全替换已知的r-klee-G′中的一个顶点所得到的.本文主要研究了r-klee-的Hamilton-连通性和着色问题.我们证明了:每一个r-klee-是Hamilton-连通的和它的色数是r;如果r是奇数,则它的边色数是r;如果r是偶数,则它的边色数是r+1.

  • 标签: γ-klee-图 Hamilton-连通 色数 边色数
  • 简介:充分利用的字典积的结构证明了以下结论:如果G_1的每连通分支都非平凡,G_2的阶数大于3,那么它们的字典积G_1[G_2]具有非零3-流.

  • 标签: 非零整数流 字典积