学科分类
/ 10
197 个结果
  • 简介:研究了如下时滞差分系统△xj(n)+^l∑i=1^m∑r=1birj(n)xr(n-i)=0,j=1,2,…,m的振动性,给出了系统所有解振动的若干充分条件.

  • 标签: 差分系统 多时滞 振动
  • 简介:本文研究了基于最小路径描述的多源点多汇点网络系统可靠性问题。定义了最小路径矩阵的几种运算,利用所定义的运算,将多源点多汇点网络系统转化为等价的单源点单汇点网络系统,并给出了由子系统可靠度精确表示网络系统可靠度的解析表达式。这种解析表达是非常重要的,它是系统可靠性的理论研究与实际应用的一个极为有效的工具。

  • 标签: 网络系统 最小路径 源点 汇点 可靠度
  • 简介:通过使用灰色矩阵覆盖集的分解方法和矩阵范数的性质,构造李雅普诺夫函数,研究了灰色中立随机线性时滞系统的鲁棒稳定性和几乎指数鲁棒稳定性.

  • 标签: 指数鲁棒稳定性 灰色 中立随机系统
  • 简介:出了二环链系统,并利用二环链特征向量,给出了一个系统可实现二环链分解的充分必要紊件,给出了可实现二环链线性系统的分解算法,研究了二环链系统的稳定性和能控性.

  • 标签: 二环链系统 二环链特征向量组 稳定性 能控性
  • 简介:本文研究文[1]中提出的一类择优增长系统,说明文[1]中利用主方程法求解系统的平均度分布及稳态度分布是值得商榷的,然后通过考虑系统中空团体的存在的可能性,对系统进行修正,并证明空团体存在的必要性。

  • 标签: 择优增长系统 度分布 无标度性 马氏链
  • 简介:为了确认王和陈提出的一个没有平衡点的混沌系统的混沌行为,我们依靠庞加莱映射和拓扑马蹄理论呈现出一个严格的马蹄混沌的计算机辅助证明。与简单的利用仿真或李亚普罗夫指数判定混沌性相比有较强的理论依据和更高的可靠性。

  • 标签: 吸引子 混沌 庞加莱映射 拓扑马蹄
  • 简介:研究节能刮板沉降箱式除尘可修复系统,运用泛函分析的方法,特别是Banach空间上的线性算子半群理论,证明了严格占优本征值的存在性,并通过分析本质谱界经过扰动后的变化,进一步表明在一定的条件下,系统的动态解以指数形式收敛于系统的稳态解.并研究了该系统算子预解式的特性.对任意给定的δ〉0,γ=a+bi,-μ+δ〈a1≤a≤a2,得到||R(γ;A+B)||=0.进而得到在Rγ≥a1的右半平面内相应于系统算子A+B的谱点由有限个本征值组成.

  • 标签: 严格占优本征值 本质谱界 扰动 指数稳定性 预解式
  • 简介:本文考虑具有张量积结构线性系统的数值解法.该线性系统常常来源于高维立方体上线性偏微分方程的有限差分离散化.利用张量一矩阵乘法,给出了基于张量格式的求解这类线性系统的共轭梯度法.与求解标准线性系统的共轭梯度法比较,新的算法能够节约大量的计算量及存储空间.

  • 标签: 张量积 张量-矩阵乘法 共轭梯度法 高维
  • 简介:应用变分方法与Morse理论,本文讨论下面含有时滞的广义Hamilton系统的周期解,J^*du/dt=g(t,u(t-r1),…,u(t-rs))其中J^*是非奇异2n×2n反对称矩阵,在一定条件下,本文得到上述议程至少存在两个非平凡2π-周期解;而对于一般的微分系统,本文给出其具有变分结构的判定性准则。

  • 标签: 偏差变元 时滞微分方程 广义HAMILTON系统 存在性 周期解
  • 简介:本文利用矩阵谱半径小于1的一个充分条件,给出了对称灰色系统稳定性判别的一个简便方法。

  • 标签: 灰色系统 稳定性
  • 简介:给出了Banach空间中线性离散时间系统一致与非一致多项式膨胀性的概念,使其在相应空间中范数的增长速度不快于指数型增长,并用实例阐释了二者的关系.借助于指数型膨胀性的研究方法,讨论了其非一致多项式膨胀性的离散特征.作为应用,利用Lyapunov函数给出了相应概念的充要条件.得到了指数膨胀性理论中一些经典结论在非一致多项式膨胀情形下的变形.

  • 标签: 线性离散时间系统 非一致多项式膨胀性 LYAPUNOV函数