简介:当跟踪目标属于隐身目标、低空目标或处于强杂波和干扰环境,都会导致雷达的目标检测概率降低,丢失率较高。因此,本文着重研究PHD算法在检测概率较低的情况下跟踪稳定性不佳的缺陷,找出了一种适用于低目标检测概率的L-GMPHD滤波,通过对前一时刻状态估计值外推,若发生漏检,则将外推值加入当前时刻状态估计值中,确保了目标的状态估计不被裁剪去除。从MATLAB仿真结果可知,L-GMPHD滤波器处于检测概率较低的情况时,能够明显改善目标跟踪的稳定性。该方法能够保持高精度的多目标跟踪,具有良好的工程应用前景。
简介:天波超视距(0TH)雷达系统中,为了获得较高的多普勒分辨率,通常会采用长的相干积累时间,但对于机动目标,长相干积累时间会导致回波的多普勒展宽,不利于检测。对于弱目标,由于其能量低,容易被强目标掩盖,加大了检测难度,针对这一问题,提出一种基于目标运动参数估计的0THR机动弱目标检测方法。利用遗传算法优越的参数估计性能这一特点,采用遗传算法估计各目标的运动参数,并引入“clean”算法的思想,在时域上逐个减去强目标,以消除强目标的掩盖效应。又考虑到遗传算法的运算量较大,进一步提出采用时频分析算法估计各参数范围,减小遗传算法的运算量。仿真结果表明,与已有算法相比,文中算法具有更高的参数估计精度和弱目标检测性能。
简介:对ATI技术进行改进,提出了一种机栽双通道SAR加权ATI地面慢速运动目标检测方法。该方法将DPCA技术和ATI技术的优点结合起来,利用DPCA技术得到加权值对ATI干涉结果进行加权处理,提出了一种新的动目标检测方法。计算机仿真结果表明,该改进方法与ATI方法相比能够有效减少虚假目标的数目,并能够检测到弱目标;与DPCA方法相比,它能够检测到DPCA方法由于对消过大而无法检测到的速度更慢的目标。
简介:本文针对高频雷达中高机动目标检测难点,提出利用粒子滤波TBD算法检测高机动飞机目标的方法。该方法将一个相干积累时间内的回波数据进行分段滑窗相干积累,对形成的多帧多普勒域观测数据进行粒子滤波检测前跟踪(TBD)处理,获取目标存在概率及目标运动状态估计。蒙特卡洛仿真结果和回波数据验证表明该方法可提高对高频雷达高机动目标的检测能力,具备一定的工程可行性。
简介:针对传统光学遥感图像近岸舰船检测方法不能处理大场景图像问题,提出了一种新的大场景近岸舰船检测方法。该方法采取分块处理策略,利用粗海陆分割方法筛选有效检测区域块,以缩小目标检测范围和提高检测效率。在检测结果合并阶段,采用0-1整数规划方法进行融合建模,并根据约束集对模型进行拆分,从而提高了结果融合效率。试验结果表明该方法具有较高的近岸舰船检测效率。
简介:基于SAR图像的舰船目标自动检测是海洋监视应用的重要方面,但随着SAR成像能力和图像分辨率的提高,传统的CFAR检测方法已不能满足舰船目标自动检测的要求。针对中高分辨率SAR图像中舰船目标自动检测问题,提出一种基于像素筛选G0分布的SAR图像舰船目标快速检测方法,该方法首先根据像素灰度值出现频率选取阈值对杂波像素进行筛选,然后通过抽样定理对图像进行降分辨率处理,最后再在经过像素筛选的降分辨率图像中实现基于G0分布的自适应CFAR检测。NASA/JPLAIR-SAR实测数据的实验结果表明,该方法不仅能有效减少中高分辨率SAR图像舰船目标自动检测的虚警,而且能显著提高检测效率。