简介:灰色的鸽子在窗外的天空飞过.程池坐在窗前一直看着那鸽子在远处消失--飞翔的鸽子被远处灰色的楼群遮去了.程池一直等待着,他相信那消失的鸽子还会飞回来.程池点着一枝烟,他吸着,目光一直对着窗外的天空.窗外的天空是一种雾蒙蒙的灰色.现在是五月,五月的这个城市上空一直是雾蒙蒙的,在这雾蒙蒙的景象中,春天的气息浮躁地飞扬--它夹杂着每天扬起的灰尘,夹杂着永恒的不安.
简介:摘要目的构建并验证多模态MRI图像3D卷积神经网络(convolutional neural network, CNN)模型对肝纤维化(liver fibrosis, LF)分类的价值。材料与方法回顾性分析经病理证实为LF,并行肝脏3.0 T MRI检查的224例LF患者的T1WI、T2WI、表观扩散系数(apparent diffusion coefficient, ADC)图像,按8∶2的比例随机分为训练集和测试集。对图像进行预处理后,应用训练集图像对模型进行网络结构迭代训练,建立3D-CNN深度学习模型对无显著LF(S0~S1)、显著LF(≥S2)进行分类。经过优化的CNN由三个卷积层、三个池化层和两个全连接层组成。训练完成后,用测试集数据对CNN模型进行测试,使用准确度(accuracy, ACC)曲线、损失函数(loss)曲线及受试者工作特征(receiver operating characteristic, ROC)曲线评价模型的性能。结果基于多模态MRI的3D-CNN深度学习模型在训练集中对LF分类的ROC曲线下面积(area under the curve, AUC)值为0.94,在测试集中的AUC为0.98。结论多模态3D-CNN深度学习模型可对无显著LF和显著LF进行分类,为LF的无创性评估提供更多选择。
简介:摘要目的探讨基于深度学习的人工智能在非炎性主动脉中膜变性中的辅助诊断及其应用价值。方法选取2018年1—6月首都医科大学附属北京安贞医院保存的89例非炎性主动脉中膜变性标本组织HE切片,扫描成数字切片后进行人工标注,在标注区域总提取1 627幅中膜病变HE图像。结合一种改进的基于ResNet18的卷积神经网络模型,进行非炎性主动脉病理图像的4分类研究,并对模型应用进行检测。结果4分类模型对中膜变性病理改变中最常见的平滑肌细胞核缺失病变的识别准确率、灵敏度及精确率分别为99.39%、98.36%、98.36%。弹力纤维断裂和/或缺失病变识别精确率为98.08%;层内型黏液样细胞外基质聚集病变识别准确率为96.93%。模型整体准确率为96.32%,受试者工作特征曲线下面积值可达0.982。结论初步验证了深度学习神经网络模型在非炎性主动脉病变图像分类方面的准确性,该方法可以有效提升病理医师诊断效率。