学科分类
/ 4
80 个结果
  • 简介:在基于DSP的低成本MINS/GPS组合导航系统中,针对DSP的实型变量位数不足的缺点,在卡尔曼滤波器的设计中同时运用了状态与偏差解耦算法和平方根算法,并推导出状态与偏差解耦-平方根算法的具体公式,既能减少计算量,又能增强滤波的数值稳定性.

  • 标签: 组合导航 卡尔曼滤波 状态与偏差解耦 平方根算法 DSP
  • 简介:针对GPS/SINS组合导航系统的滤波算法误差较大,对常用的卡尔曼滤波算法进行了总结和分析,在此基础上,提出一种将H∞后置滤波和H∞前置滤波相结合的方法,形成H∞双滤波算法.以GPS/SINS组合导航系统为例进行了仿真,结果表明此方法既能抑制滤波发散,又能提高滤波精度.

  • 标签: 组合导航 H^∞ 卡尔曼滤波 GPS/INS
  • 简介:针对1点RANSAC(RandomSampleConsensus)单目视觉EKF(ExtendedKalmanFilter)算法中的滤波发散问题,分析了滤波发散的产生原因,提出了一种基于渐消记忆滤波的1点RANSAC单目视觉姿态估计算法。该算法通过在EKF滤波方程中引入加权因子,逐渐加大当前数据的权重,相应地减少旧数据的权重,有效地扼制了算法中的滤波发散问题。最后通过两组验证性实验验证说明了算法的有效性。实验结果表明:该算法能够有效地解决1点RANSAC单目视觉EKF算法中的滤波发散问题,具有更高的精度。第一组双轴联动实验,航向角的平均误差减小2.4158?,俯仰角平均误差减小0.1782?;第二组偏航轴大角度转动实验,摄像机航向角的估计误差一直保持在1.5?以内。

  • 标签: 1点RANSAC算法 渐消记忆滤波 单目视觉 滤波发散
  • 简介:针对捷联惯组历次测试数据小样本、非等间隔、非线性的问题,提出了一种基于分形插值的三次混合插值算法。通过第一次分形插值保证原始测试数据的变化趋势;通过第二次样条函数插值保证了插值的准确性,实现原始测试数据等间隔化;通过第三次分段线性插值,扩大样本容量,同时保证了原有测试序列的统计特性不变。实例分析表明,该算法很好的实现了对捷联惯组历次测试数据的等间隔处理和样本容量扩大,为捷联惯组历次测试数据小样本建模分析提供良好的基础。

  • 标签: 捷联惯组 历次测试数据 小样本 非等间隔 分形插值
  • 简介:用时域泰勒级数展开的方法分析了速率偏频激光陀螺惯导系统常用速度数值积分算法的误差。分析显示速率偏频陀螺本身的高速旋转使惯性导航系统时刻处于大角运动条件下。若其旋转轴与比力方向不平行,则常用速度算法的误差不可忽略。提出了速率偏频激光陀螺惯导系统速度算法的优化改进方法。对常用速度算法和提出的算法进行了仿真比较。仿真显示,用泰勒级数展开分析速度数值积分算法误差是可行的;提出的算法能够将速率偏频激光陀螺惯导系统以及其他惯性导航系统在大机动运动环境下的导航精度提高一阶。

  • 标签: 速率偏频 速度算法 误差 优化
  • 简介:圆锥误差是影响捷联惯导系统姿态算法精度的原理性误差,其对三轴激光捷联惯导系统精度的影响显著.对三轴机抖激光陀螺捷联惯导系统,除了弹体运动可能引入圆锥运动外,三轴机抖激光陀螺产生的机械抖动也会在惯导系统中引入圆锥运动.文中分析了两种圆锥运动在三轴激光捷联惯导系统中产生的机理,并给出了圆锥误差补偿算法在不同试验条件下的应用效果.

  • 标签: 捷联惯导系统 圆锥误差 姿态算法 激光陀螺
  • 简介:常规惯性/天文组合导航方法难以直接应用于高超声速飞行器机载环境下以载体系为基准进行星光测量的情况,且在可见星只有一颗时无法连续组合。为此,构建了高超声速飞行器惯性/卫星/天文紧组合导航系统方案,通过分析载体系下星光仰角、方位角与惯导误差之间的转换关系,建立了载体系下惯性/天文角度组合模型。理论分析表明,该系统在只有一颗导航星时仍能辅助惯导工作,且可使观测噪声特性保持稳定,从而提高了天文对惯导辅助的连续性和组合滤波估计精度。仿真结果表明,在高超声速飞行器导航系统采用天文角度辅助后,姿态误差较无天文辅助情况的降低60%~70%。

  • 标签: 天文导航 角度观测 组合导航 卡尔曼滤波
  • 简介:针对SAR图像匹配及定位需要耗用不等的计算时间而造成的量测不等间隔输出和量测信息滞后问题,提出一种新的SAR时延补偿算法。该算法在标准卡尔曼滤波(KF)基础上,当SAR有量测信息生成时,根据多模型方法进行量测预测,利用预测值修正SINS状态;而SAR无量测信息输出时,通过插值方法生成量测信息来改善系统滤波精度。仿真结果表明,采用基于多模型量测预测的KF算法可以将位置误差由45m减小到10m以内,航向角稳态误差值小于5.8";而在此基础上叠加插值预测算法可以将位置误差进一步控制在6m以内,航向角稳态误差小于4.7",证明了本文提出的算法能够有效补偿SAR的随机时延并提高组合导航系统的解算精度。

  • 标签: 组合导航 SAR时延补偿 量测滞后 量测预测
  • 简介:在详细分析光纤陀螺零漂的基础上,提出了先用滤波算法对光纤陀螺信号进行预处理,然后采用RBF神经网络对滤波后的信号进行建模的方法.针对光纤陀螺信号特点分别采用FLP算法、小波滤波算法、解相关变步长LMS自适应滤波算法对其进行了预处理,比较三种滤波方法,小波滤波算法效果优于其它两种预处理方法,但针对基于预处理后的陀螺信号采用RBF神经网络进行建模时,小波滤波预处理后的信号在建模精度上却是最差的,而对FLP算法滤波后的信号进行RBF建模,建模精度提高了两个数量级。结果表明:基于FLP算法的RBF神经网络在光纤陀螺中的建模是有效的,可大大提高建模的精度。

  • 标签: 光纤陀螺 零漂 FLP算法 小波消噪 LMS算法 RBF神经网络
  • 简介:腔长控制镜影响激光陀螺谐振腔的光束形状、光强等参数,是制约激光陀螺精度提高的重要因素之一。减少激光陀螺腔长控制镜的位移扭偏,提高腔长控制镜的环境耐受性,能够直接改善激光陀螺的性能。通过研究激光陀螺腔长控制镜的基本机理,分析了腔长控制镜单筋方案和双筋方案的典型结构和特点,给出了提高反射镜抗扭偏能力的设计方法,设计并实现了新型双筋腔长控制镜结构。改进的腔长控制镜仅由3种零件、2种材料构成。经过仿真分析和试验验证,设计的腔长控制镜可以有效抵抗反射面的歪斜扭偏,在-50℃~+70℃工作范围内,抗扭偏能力提高5~10倍,同时实现了低成本和高稳定性。

  • 标签: 激光陀螺 腔长控制镜 扭偏角 双筋结构
  • 简介:TNNS(真航向导航系统)由MS860接收机、INS及处理数据的PC/104架构的嵌入式工控机构成.针对TNNS推导了INS(惯性导航系统)的误差模型,提出了适合于TNNS的降阶扩展卡尔曼滤波算法组合GPS和INS。系统在东海作了三次海试,软件及滤波算法平台由C/C++编制.海上试验表明,组合滤波后,INS的位置误差由i00m降低到40m以下;进行最优化滤波后的航向误差α由原来的0.105°减小为0.034°,纵横摇的误差也大幅减小.整个海试结果表明,在TNNS中组合GPS/INS采用的降阶扩展卡尔曼滤波算法,大幅提高了系统精度和可靠性.

  • 标签: GPS/INS 组合导航系统 误差模型 降阶扩展卡尔曼滤波
  • 简介:本文依据卡尔曼滤波器在使用最佳增益时,其余差序列互不相关的性质,开发了一种新的渐消滤波算法。该算法根据对象输出,在线自适应地调整遗忘因子,从而使滤波器在对象模型存在误差或对象受到外扰时,仍收敛并保持最佳性。该算法应用于陀螺随机常值漂移的标定,取得较好效果

  • 标签: 卡尔曼滤波 自适应滤波 捷联惯性系统 陀螺漂移
  • 简介:陀螺的噪声是影响组合导航系统精度的重要因素之一。以插秧机GPS/INS组合导航系统为研究背景,在分析常规硬阈值和软阈值小波去噪的基础上,提出了一种改进的小波阈值去噪方法。该方法构造了一种改进的阈值函数,改进的阈值函数具有较好的连续性,避免了将混叠在噪声中的有效信号完全消除,能够自动调节小波系数的收缩程度,具有一定的自适应性。利用插秧机组合导航系统中微机械陀螺的实际输出数据,分别采用硬阈值、软阈值和改进阈值小波去噪方法进行了对比试验。结果表明改进的小波阈值去噪方法处理后信号的信噪比提高了约3倍、均方差小,具有一定的实用价值。

  • 标签: 小波阈值 微机械陀螺 去噪 数据处理
  • 简介:多路径误差是北斗导航定位系统高精度动态监测的主要误差源。针对北斗导航定位系统多路径误差的特性,结合广义特征值盲源分离方法的优势,提出一种基于参考信号的广义特征值盲源分离算法来削弱多路径效应的影响。首先将前一天的原始坐标残差序列通过奇异谱分析方法进行去噪,其结果作为初始参考信号;然后将当天的原始坐标残差序列进行经验模式分解方法分解,分解得到的IMF分量作为虚拟观测数据,利用广义特征值盲源分离算法获取当天多路径误差信号;最后,利用仿真数据和连续10天的实际观测数据进行试验分析,结果表明利用该方法建立的多路径误差改正模型能有效地了削弱多路径的影响,北、东、天三个方向精度分别提高了78.8%、35.3%、90.1%。提出的模型在一定程度上解决了固定多路径模型随着时间推移重复性减小且有效性降低的问题。

  • 标签: 经验模式分解 广义特征值 盲源分离 多路径误差 北斗定位系统 动态监测
  • 简介:移动机器人的目标检测要求其对特定的静止或运动物体进行运动分析及检测。以Voyager-III移动机器人系统为研究对象,实现非理想光照下,对橘红色目标足球的运动检测。提出在传统三帧差分法基础上,先利用Markowitz投资组合模型进行足球目标的特征提取,将场地非感兴趣的目标中,出现全部像素值发生变化的目标去除,再进行图像帧间差分。利用CCD摄像机对比赛环境中足球的运动轨迹进行录制,选取具有代表性的各帧视频图像、Markowitz算法优化后的差分图像和跟踪图像,结果表明跟踪图像不含非目标物的干扰,克服了差分图像存在空洞的问题,为移动机器人提供了一种实用的运动目标检测方法。

  • 标签: 三帧差分法 MARKOWITZ投资组合模型 运动目标检测 移动机器人 像素值
  • 简介:为了提高潜器导航定位精度,针对等值线算法在惯导系统初始误差较大时易发散的问题,提出基于概率神经网络调优的等值线改进方法。首先,在搜索区域内,利用概率神经网络算法对惯导系统航迹进行调优,并经过卡尔曼滤波器与惯导系统航迹进行信息融合形成待匹配航迹;在此基础上利用实时等值线算法得到最佳匹配位置。分别在不同初始条件下进行仿真分析,得出概率神经网络算法在大的初始误差下不易发散但定位精度不高的结论,然后在潜器行驶6h后,初始误差为5.438?的条件下进行仿真验证,结果表明,改进方法定位精度均值优于0.537?,从而证明改进方法是有效的,即使在大的初始误差下仍然能够达到较高的定位精度。

  • 标签: 辅助导航 重力梯度 概率神经网络算法 等值线算法 潜器
  • 简介:针对SINS/GPS组合导航系统中的GPS故障,结合GPS导航定位信息的特点,提出了基于改进型灰色预测的GPS故障预测模型,实现了GPS故障预测;结合SINS/GPS组合导航系统数学模型,进行了基于改进型灰色预测的SINS/GPS组合导航系统仿真。仿真结果表明,GPS位置数据预测残差小于1.5m;在GPS短暂故障期间,由预测数据取代GPS故障数据,可以有效提高SINS/GPS组合导航系统的抗干扰能力,保证其导航精度;比较GPS故障数据和预测数据,并根据故障数据的持续时间和变化特点等,可以诊断GPS故障是硬件故障还是外部干扰的影响,有助于实现GPS的故障判别与隔离。

  • 标签: 控制与导航 灰色预测模型 故障预测 组合导航
  • 简介:为了提高舰船惯性导航系统在动基座下的传递对准的精度和快速性,针对舰船平台的应用特点,采用卡尔曼滤波器对主、子惯导的“速度加角速率”参数的误差量进行滤波估计并进行了算法设计。运用卡尔曼滤波器的平滑算法改善传递对准的精度。针对卡尔曼滤波器平滑算法会降低对准速度的缺点,在只损失一小部分精度的前提下,创新性的采用卡尔曼滤波器的降阶算法提高了对准速度。通过Matlab软件对卡尔曼滤波器算法、卡尔曼滤波器平滑算法和卡尔曼滤波器平滑加降阶算法的速度误差和姿态误差分别进行了仿真。仿真结果表明,“速度加角速率”匹配传递对准改进算法具有稳健的对准精度和快速性,有一定工程应用参考价值。

  • 标签: 传递对准 舰船惯导系统 速度加角速率匹配:平滑算法 降阶算法
  • 简介:在广义系统故障诊断过程中,若系统动态模型中存在不确定性,传统的无迹卡尔曼滤波算法将失去其传感器故障估计精度。为解决该问题,提出一种改进的强跟踪卡尔曼滤波算法以实现广义连续-离散系统的传感器故障诊断及隔离。首先,提出基于多重渐消因子的强跟踪滤波算法以实现动态模型存在不确定性广义连续-离散系统的故障诊断;然后提出一种结合多模型自适应估计的强跟踪卡尔曼滤波(STUKFMMAE)算法以实现传感器故障的有效隔离。最后,针对基于广义连续-离散系统的惯性传感器故障模型提出仿真算例。仿真数据表明,传统无迹卡尔曼滤波对于传感器故障估计误差为0.002左右,而提出的基于多重渐消因子的强跟踪滤波算法对于传感器故障估计误差最大值为未超过4×10~(-4),且STUKFMMAE相较于UKFMMAE算法具有更好的隔离效果。仿真结果验证了设计方案的有效性。

  • 标签: 广义系统 连续-离散系统 故障诊断及隔离 多模型自适应估计 强跟踪卡尔曼滤波