简介:Yangetalgavesomecriteriaofprequasi-invexfunctions,semistrictlyprequasi-invexfunctionsandstrictlyprequasi-invexfunctionsin2001,underacertainsetofconditions.Inthisnote,someoftheseconditionscanbeweakenedtogetthesameresults,andanothersimplifiedproofforacriterionofprequasi-invexfunctionsestablishedundertheconditionoflowersemicontinuityisgiven.
简介:定义在全体实数上的可计算函数是一个很重要的概念.在这以前定义可计算的实数函数有两个途径.第一个途径是首先要定义可计算实数的指标.想要确定实数函数y=f(x)是不是可以计算就要看是否存在一个自然数的(部分)递归函数将可计算实数x的指标对应到可计算实数y的指标.这样一来对实数函数的研究依赖于对自然数函数的研究.第二个定义可计算的实数函数的途径是以逼近为基础的.一个实数函数是可以计算的如果它既是序列可计算的同时也是一致连续的.用这个途径来定义可计算实数函数使用的条件过强以至于很多有用的实数函数成为不可计算的实数函数.例如“〈”和“=”的命题函数就是不可以计算的因为它们是不连续的命题函数.本文讨论了图灵机的稳定性并且给出了一个基于稳定图灵机的可计算实数函数的定义.我们的定义不需要用到自然数的(部分)递归函数.根据我们的定义很多常用实数函数特别是一些不连续的常用实数函数都是可以计算的.用我们的定义来讨论可计算实数函数的性质比原来的定义要方便得多.
简介:一、启发提问1.正比例函数与一次函数有什么区别与联系,它们自变量的取值范围是什么.2.正比例函数与一次函数的图象各是什么,确定它们的解析式各需要求得什么.二、读书指导1.若函数y=其中k是常数,b是,那么y叫做x的一次函数,当b=时,函数表达式变为y=,这时y是x的正比例函数.因此正比例函数是一次函数的特殊形式.2.一次函数y=kx+b(k≠0)中自变量x的指数是,x的系数k必须不为0,又叫做比例系数,确定一次函数的解析式,就是要确定待定系数k、b的值.3.一次函数y=kx+b(k≠0)的图象是经过(0,b)点且与正比例函数y=kx(k≠0)的图象平行的一条直线.而正比例函数y=kx(k≠0)