学科分类
/ 17
321 个结果
  • 简介:<正>随着新课程的全面实施,如何在数学教学中体现新课标的教学理念,正是大家关注的热点问题.近几年的全国各地的中考数学试题中,正出现了这种体现课标新理念的新题型.这些新题型不仅很好地考查了数学的"基础知识"和"基本技能",而且还有效地考查了学生运用所学知识解决实际问题和创新思维的能力.

  • 标签: 新题型 数学教学 正出现 新课程 函数解析式 平面直角坐标系
  • 简介:通过对几道关于函数在满足一类特定的积分等式条件下的零点存在性典型证明题进行观察和深入地分析,提出了一类具有普适性的命题,并给予证明和推广.

  • 标签: 函数零点 函数线性无关 定积分 等式 推广
  • 简介:函数是高中数学中的重点章节,也是高中数学中的重点和难点,同时函数作为高中数学的主线贯穿整个高中数学的学习.函数包含三要素:定义域、值域和对应法则,其中函数的值域在’函数的学习中也具有重要地位.由于求函数的值域所涉及的知识面广,涉及的数学思想方法多,

  • 标签: 函数值域 高中数学 求法 数学思想方法 对应法则 定义域
  • 简介:本文研究了经济学中函数边际概念的经济意义,将边际分析这一经济理论中关于经济函数边际概念的经济意义进一步数量化、精确化、实证化,并得出一类形如integral(x)=c+bx+ax~2的典型经济函数边际概念经济意义的精确解释,建立了反映其经济意义的既简单又合用的重要公式.

  • 标签: 边际分析 边际函数 边际函数值
  • 简介:在本文中,我们定义了C-cosine算子函数的Abel遍历性与Cesàro遍历性,讨论了C-cosine算子函数这两种遍历性的相互关系及基本性质,得到了其强Abel遍历性在R(C)稠时的完全刻划.此外,我们还讨论了C-cosine算子函数的轨道遍历性,并借助于K-泛函,给出了C-cosine算子函数在0点以非最优化速率收敛的一个充要条件.

  • 标签: C-cosine算子函数 Abel遍历 Cesàro遍历 轨道遍历 K-泛函 非最优化速率
  • 简介:一次函数是八年级上册第十一章的重点内容,每年中考必考,要学好一次函数除了掌握一次函数的必备知识外,还要注意必要解题方法.

  • 标签: 函数 一次函数
  • 简介:三角函数问题是高考中的重要考点,知识体系严密,解题方法独特且实际应用广泛,但是由于内容繁杂、公式众多、变换复杂,不易发觉的隐含内容较多,学生稍有不慎就会进入题设的误区且不易觉察.下面就考试中学生常出错的几个问题予以分析,仅供参考.

  • 标签: 三角函数 题型 函数问题 知识体系 解题方法 中学生
  • 简介:Yangetalgavesomecriteriaofprequasi-invexfunctions,semistrictlyprequasi-invexfunctionsandstrictlyprequasi-invexfunctionsin2001,underacertainsetofconditions.Inthisnote,someoftheseconditionscanbeweakenedtogetthesameresults,andanothersimplifiedproofforacriterionofprequasi-invexfunctionsestablishedundertheconditionoflowersemicontinuityisgiven.

  • 标签: 凸函数 判别准则 经验 注记
  • 简介:用初等方法求函数值域,一般来说是相当困难的,需用很多特殊的技巧,且只能解决一些特殊的问题,本文将运用微积分的方法对初等函数的值域作一般的讨论.一、介值定理的推广我们知道,对闭区间上的连续函数有介值定理:若f(x)在区间[a,b]上连续,f(a)=A,...

  • 标签: 求函数值域 不可导点 单侧极限 介值定理 初等函数 义域
  • 简介:<正>反比例函数是初中数学学习的三大函数之一,在中考中也是必考内容.在解决有关反比例函数的问题时,常常因为对其概念认识不清,性质理解不全面,或因对实际问题思考不周,而导致解题错误.剖析错解的原因,可以加深对其概念和性质的理解掌握.

  • 标签: 比例函数 错解 必考内容 隐含条件 合情推理 概念认识
  • 简介:定义在全体实数上的可计算函数是一个很重要的概念.在这以前定义可计算的实数函数有两个途径.第一个途径是首先要定义可计算实数的指标.想要确定实数函数y=f(x)是不是可以计算就要看是否存在一个自然数的(部分)递归函数将可计算实数x的指标对应到可计算实数y的指标.这样一来对实数函数的研究依赖于对自然数函数的研究.第二个定义可计算的实数函数的途径是以逼近为基础的.一个实数函数是可以计算的如果它既是序列可计算的同时也是一致连续的.用这个途径来定义可计算实数函数使用的条件过强以至于很多有用的实数函数成为不可计算的实数函数.例如“〈”和“=”的命题函数就是不可以计算的因为它们是不连续的命题函数.本文讨论了图灵机的稳定性并且给出了一个基于稳定图灵机的可计算实数函数的定义.我们的定义不需要用到自然数的(部分)递归函数.根据我们的定义很多常用实数函数特别是一些不连续的常用实数函数都是可以计算的.用我们的定义来讨论可计算实数函数的性质比原来的定义要方便得多.

  • 标签: 可计算实数函数 稳定性 图灵机
  • 简介:我们知道,均值不等式定理:a,b∈R,→a+b≥2√(ab)(当且仅当a=b时取“=”号)适用的条件是只有在两项相等且都为正的条件下,才存在“积是常数,和有最小值;和为常数,积有最大值”的结论这是求解某些不等式和某些函数最值的最常见的方法之一,但是若a和b不会相等时,此方法就失效了.然而很多学生经常误用这个结论,

  • 标签: 函数最值 典型函数 不等式定理 最小值 最大值 常数
  • 简介:本文讨论了混合事基函数和具有凸性性质的混合曲线的方法,给出了相应基函数应该满足的条件.并具体分析了一类三角多项式曲线具有的凸性性质,讨论了这样的二次多项式曲线与相尖的Bézier曲线的关系。

  • 标签: 凸性 基函数 三角多项式 函数曲线 性质 二次多项式
  • 简介:一、启发提问1.正比例函数与一次函数有什么区别与联系,它们自变量的取值范围是什么.2.正比例函数与一次函数的图象各是什么,确定它们的解析式各需要求得什么.二、读书指导1.若函数y=其中k是常数,b是,那么y叫做x的一次函数,当b=时,函数表达式变为y=,这时y是x的正比例函数.因此正比例函数是一次函数的特殊形式.2.一次函数y=kx+b(k≠0)中自变量x的指数是,x的系数k必须不为0,又叫做比例系数,确定一次函数的解析式,就是要确定待定系数k、b的值.3.一次函数y=kx+b(k≠0)的图象是经过(0,b)点且与正比例函数y=kx(k≠0)的图象平行的一条直线.而正比例函数y=kx(k≠0)

  • 标签: 正比例函数 一次函数 函数的图象 函数解析式 函数关系式 待定系数法