简介:本文研究了一类广义的Lasota-Wazewska模型的正概周期解,通过转化模型为一个等价的积分方程,并利用非增算子的锥上不动点定理,建立了该模型正概周期解存在性的新结果,对照已有的工作,本文的方法是新颖的.
简介:研究一类非线性双曲方程utt-M∫Ω|u|2dx△u=|u|αu的初边值问题局部解的存在性和唯一性.利用Galerkin方法和改进的势井理论得到:当M(r)和α满足一定条件,且初值充分小时,方程存在局部解.
简介:预测类Apollo返回舱外形在高焓来流下的气动热特性,研究网格Reynolds数、壁面温度、多种化学反应模型以及限制器对预测热流的影响.采用ESI-CFD-FASTRAN软件作为数值模拟平台,使用基于温度梯度及分子扩散效应的热流模型;空间离散采用Roe-FDS格式,时间推进采用点隐式;采用等温壁面条件.数值计算表明:(1)热流在返回舱头部驻点处达到一个极值,沿着壁面热流不断下降,经过返回舱肩部热流有突越上升;(2)满足网格Reynolds数小于10的网格获得的热流较为准确;(3)使用Gupta模型计算得到的热流与Park85模型得到的类似,但是获得的热流分布类似;(4)采用湍流模型获得的头部肩部热流结果与层流结果相同;(5)二阶min-mod限制器实现了高阶格式,其计算得到的热流结果在肩部略高,但是整体分布略低于不带限制器的格式.因此,在计算中采用满足网格Reynolds数壁面网格,采用带限制器的高阶格式计算获得的热流分布更加准确;由于头部热流主要贡献并非来源于湍流,因此对于肩部热流采用层流模型足够准确.
简介:讨论了一类具有奇异系数的p-Laplace问题-Δpu-μ|u|u|x|p=u|x|tu+λuq-2u,x∈Ω,u=0,x∈Ω无穷多解的存在性,其中N≥3,Ω是RN中一有界光滑区域,0∈Ω,Δpu=-div(|▽u|p-2▽u),0≤μ〈μ=(N-p)ppp,1〈p〈N,0≤t〈p,λ〉0,1〈q〈p,p*(t)=p(N-t)(N-p)是Hardy-Sobolev临界指数利用变分原理和对偶喷泉定理,证明了该问题具有无穷多解.