简介:提出求解一阶Lagrange力学逆问题的新途径;给出由一阶微分方程直接构造Lagrange函数的基本解法,以及几种与不同的补充条件相对应的特殊解法.举例说明所得结果的应用.
简介:转子系统的不对中问题在旋转机械中非常普遍,是引起严重整机振动的主要原因之一.特别地,以先进涡扇发动机转子系统为代表的带有弹性支承、内外布置的多转子系统,其动力学特性具有特殊性,不对中的理论问题与工程需求十分突出.本文首先针对两类不对中问题(联轴器不对中和支点不对中),评述了目前不对中建模方法、不对中转子系统的动力学和振动特性方面的代表性研究成果.其次,针对航空发动机转子系统,详细综述了目前已有的套齿联轴器、弹性支承组件的动力学研究成果.在此基础上,作者针对其具体结构特征,进行了航空发动机转子系统不对中成因与模式分类,初步建立了联轴器不对中和支点不对中的转子系统动力学模型并进行了振动特性分析.
简介:非线性输出频率响应函数是由Volterra级数发展而来的频域概念,可方便在频域对非线性系统进行分析,它是频率的一维函数.本文主要介绍了利用NARMAX模型以及NOFRF对结构进行损伤检测的方法,并利用实验研究证实了该损伤检测方法的可行性.另外,由于系统非线性特性可用来做结构损伤检测,且具有对系统状态比较敏感的优点,而基于NOFRF的损伤检测方法是利用非线性方法来分析系统的状态,该方法提取出的特征属于非线性特征,所以该损伤检测方法可以用来做结构损伤检测,且具有对系统状态比较敏感的优点.
简介:以灰色预测控制理论为基础,采用现代控制理论中的二次型优化原理,以控制力和响应加权最小为目标函数,设计了两种基于灰色预测理论的转子系统振动主动控制方案--灰色GM(1,1)预测优化控制方案和灰色Verhuslt预测优化控制方案.并将该两种方案分别应用于带电磁阻尼器转子轴承系统的转子振动主动控制中,通过数值仿真验证了两种控制方法的有效性,并对两种方法的控振效果进行了比较.
简介:在Goodwin与Puu的宏观经济思想基础上,得到了一个推广的非线性动力学经济周期系统.首先用数值方法研究了此系统在特定参数条件下的全局分岔行为.然后结合最大Lyapunov指数,详细讨论了系统在分岔过程中动力学特征的转变.通过分析分岔图形发现在某些参数区间内倍周期分岔导致了混沌;在混沌区域内嵌有多个周期窗口;"加速数"值的增加可以促进经济的周期性运动.最后介绍了分岔和混沌分析得到的动力学性质对理解经济波动的应用.
简介:建立了两自由度两点碰撞振动系统的动力学模型,给出了碰撞振动系统产生粘滞的条件,分析了系统存在的粘滞运动,采用打靶法,利用变步长逐次迭代逼近的方法求解系统的不稳定的周期碰撞运动,即Poincare截面上的不动点,通过对两自由度两点碰撞振动系统进行数值模拟显示了系统在一定参数条件下存在周期倍化分叉和Hopf分叉,同时通过数值模拟的方法得到了以两自由度两点碰撞振动系统Poincare截面上的不变圈表示的拟周期响应,并进一步分析了随着分岔参数的变化,两自由度两点碰撞振动系统周期运动经拟周期分叉和周期倍化分叉向混沌的演化路径。
简介:随着MEMS技术工艺的发展,微型结构在工程领域的应用越来越广泛.对于微型结构,经典连续介质力学理论的本构关系中不包含任何特征长度尺度,不能反映结构在微米尺度下的尺寸效应.本文基于VonKarman大变形理论和一阶剪切变形理论,把考虑尺寸效应的应变梯度理论推广至微型Mindlin板的非线性问题.分别计算微结构的应变能,包括宏观变形应变能和微观变形应变能两部分,结合微型Mindlin板结构的动能及外力功,代入Hamilton原理,得到了微型Mindlin板在大变形情况下的非线性动力学方程及边界条件.
简介:伸出织物表面的短、粗纤维末梢是产生贴身纺织品针刺感的主要原因,本质是纤维末梢刺扎并诱发皮肤伤害性机械刺激感受器.通常基于固定-铰接约束条件下弹性压杆轴向压缩稳定性理论,计算纤维末梢的临界压力判断这种感受器的诱发可能性.然而,这种方法忽略了织物握持纤维末梢的强度、纤维末梢接触皮肤的滑动阻力及其柔韧性特征.本文以伸出织物表面的直立纤维末梢为对象,假设其织物握持端为线弹性转动约束、另一端受皮肤的接触反作用力和滑动阻力作用,建立纤维末梢刺扎人体皮肤的弯曲变形力学模型.通过参数化模拟,本文比较分析了纤维末梢在弹性-支撑约束和固定-铰接约束条件下的弯曲变形行为.研究发现,纤维末梢在弹性-支撑约束条件下的弯曲力学行为才能解释其刺扎皮肤产生的大多数力学现象及针刺感现象.
简介:采用单向耦合同步法,利用Lyapunov稳定性定理、全局同步法及最大Lyapunov指数法分别对Lorenz系统、变形耦合发电机系统及超混沌Chen系统的自同步进行了研究.为适用于混沌保密通信,使用单路信号实现了驱动系统与响应系统的同步,并给出将超混沌Chen系统的自同步用于混沌掩盖保密通信的具体例子.数值模拟验证了所给方案的有效性.
简介:基于sinh-Gordon方程的椭圆函数解,构造新的试探解来扩展sinh-Gordon方程展开法.利用该方法研究了KdV-mKdV方程,双sine-Gordon方程和BBM方程,获得了这些方程的新Jacobi椭圆函数解.该方法也能用来求解其他数学物理中的非线性演化方程.