简介:分别采用自回归预测模型和小波神经网络模型对辽宁中部平原某区域地下水埋设进行预测,并结合区域内实测地下水埋深数据,对比分析不同模型的预测精度和适用性。结果表明:神经网络模型在辽宁中部地下水埋深预测精度好于自回归模型,更适用于辽宁中部地下水埋深的预测和趋势分析。研究成果对于辽宁中部平原区地下水埋深预测方法具有较好的参考价值。
简介:针对LIDAR点云数据中建筑物和植被难以快速分类的问题,提出了应用FCM(FuzzyC-Mean)模糊聚类的方法对离散机载激光点云数据进行建筑物和植被分类的方法.首先针对机载点云数据的特点采用了平面投影的Delaunay构网方法进行点云的三角网重构,然后根据三角网的法向矢量信息的属性不同,利用FCM方法和改进的方位矩阵方法对其进行模糊聚类,进而实现建筑物和植被等不同属性的点云分类.该方法可快速将点云进行分类,且分类结果可用不同颜色进行空间显示.在此基础上,采用IDL(Interfacedescriptionlanguage)语言编制了三维激光点云可视化分类软件LIDARVIEW.并应用该软件对某区域的机载点云数据进行了分类实验.实验结果表明:(1)基于平面投影的Delaunay构网方法特别适合机载LIDAR点云数据的快速构网,且该方法构网速度快、效率高;(2)应用FCM模糊群聚的方法和改进的方位矩阵方法适用于机载LIDAR数据的植被和建筑物分类,分类速度快且效果好;(3)FCM模糊群聚方法对机载LIDAR数据的群聚分类结果可靠、合理,具有较强的通用性和推广性.
简介:本文主要介绍了巴西坎泼斯诺沃斯面板堆石坝的设计、施工和运行情况。坎泼斯诺沃斯面板堆石坝坝高202m,是巴西目前最高的混凝土面板堆石坝。其设计和施工采用了目前混凝土面板堆石坝的新技术,不过,在大坝的运行过程中,也出现了混凝土面板挤压破坏和因库水位骤降所引起的上游面滑坡和面板断裂的问题。本文在全面介绍坎泼斯诺沃斯面板堆石坝工程特点的基础上,针对工程中出现的问题进行了分析讨论,同时,提出了200m级高混凝土面板堆石坝变形控制所府沣意的一些问题.