简介:鉴于极差比方差更容易获得,所以利用极差对正态总体方差进行间接预估以确定样本量的想法很有实用价值。根据数理统计理论,若以E(Rn)表示正态总体在样本规模n下样本极差的期望,则有E(Rn)=dnσ,dn可以通过多重积分计算得到,且只与n有关,而与μ和σ^2无关。但这种多重积分式虽然有利于在理论上阐明dm与相关变量之间的“定性”关系,却无助于在应用上获得dm与n的定量关系式。本文利用随机模拟方法和线性回归分析得到dm的一个简明表达式:dm=0.5ln(n)+3,从而由此间接获得一个正态总体方差的估计值:σ^2=[Rn/(0.5ln(n)+3)]^2。这将使直接利用“更便宜的”极差确定样本量具有可操作性。
简介:流程性材料最大的特点是其变异性小。对于这类总体,现有的标准差估计方法由于既包含组间差异,又包含组内差异,常常会夸大其估计误差。针对此,首先通过抽样设计,得到具有分层抽样特点的样本;然后借鉴单值—移动极差控制图中标准差的估计方法,构造了这类总体的标准差估计量。这样构造的标准差估计量,由于其估计误差中仅包含组内方差平均水平,从而更符合该类总体变异性小的特点。实际应用表明,该标准差估计量能显著降低估计误差。